SANJEEV AGRAWAL GLOBAL EDUCATIONAL (SAGE) UNIVERSITY, BHOPAL

MTech (VLSI DESIGN & EMBEDDED SYSTEM)

Program Structure

Program Educational Objectives (PEOs)

- **PEO-1:** To prepare the students with good understanding of the respective subjects with design, analytical and problem solving skills.
- **PEO-2:** To train the students with knowledge of latest design trends.
- **PEO-3:** To inculcate in students the sense of ethics, morality, professionalism, creativity, leadership, independent thinking, self confidence, good communication skills and prepare them to become successful engineers who can work worldwide in industries and research & development laboratories.
- **PEO-4:** To introduce the research world to them so that they feel motivated for higher studies and innovation not only in their own domain but multidisciplinary domain.
- **PEO-5:** To recognize social needs and contribute effectively through self learning.

Program Outcome (POs):-

- **PO-1:** The graduates will be able to apply the concepts of Engineering mathematics through Laplace, z-transform, linear algebra, probability and statistics, differential equations etc. and basic knowledge of engineering physics and chemistry.
- **PO-2:** The graduates will be able to understand, interpret the problem, design and perform the experiments to meet the desired solution of the problem within the context of electronics and communication engineering.
- **PO-3:** The graduates will have a good understanding of professional and ethical responsibility.
- **PO-4:** The graduates will be able to express themselves effectively through written and oral communication.

- **PO-5:** The graduates will have a good understanding and knowledge in applying the engineering solutions to society.
- **PO-6:** The graduates will have a good understanding for the need of life long learning and will be able to work in teams.
- **PO-7:** The graduates will show good proficiency in applying the techniques and knowledge of modern engineering skills in tackling contemporary technological challenges.
- **PO-8:** The graduates will have good background for admission to post graduate programs (in same domain), management degree programs and also research programs in various organizations of national and international repute.
- **PO-9:** The graduates will be able to participate and succeed in competitive examinations.
- **PO-10:** Adapt transform in industry by understanding the need of independent and lifelong learning.

Г

Course Code	Course Title	Contact Hours per Week		Credits	H (H	Theor	° y		Practical							
		L	Т	Р		ETE Duration (Hours)	MS E	ASG	TA	ATTD	ESE	Total	CE	ESE	Total	Gran d Total
VE22M101	VLSI Technology and Design	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
VE22M102	CPLD and FPGA Architectures	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
VE22M103	Embedded Systems-I	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
	DSE – I	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – II	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
VE22M104	Digital VLSI Design Lab	-	-	4	2	2	-	-	-	-	-	-	20	30	50	50
VE22M105	Embedded Systems Lab- I	-	-	4	2	2	-	-	-	-	-	-	20	30	50	50
PB22M101	Project Based Learning-I	-	-	4	2				-		-	-	50	50	100	100
VE22M106	Electronic Device Automation	-	-	4	2	2			-		-	-	20	30	50	50
-	-	To	tal		26	-	-					500			250	750

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam, CEcontinuous Evolution

					Ι	First Year	: – Seme	ester Se	cond							
Course Code	Course Title	Contact Hours per Week		Cred its	I Du (H	Theory							Practical			
		L	Т	Р		ETE Duration (Hours)	MSE	ASG	TA	ATT D	ES E	Tot al	CE	ES E	Tota l	Gran d Total
VE22M201	Embedded Systems-II	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
VE22M202	Low Power VLSI Design	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
VE22M203	Analog IC Design	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
	DSE – III	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – IV	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
VE22M204	Analog IC Design lab	-	-	4	2	3	-	-	-	-	-	-	20	30	50	50
PB22M201	Project Based learning-II	-	-	4	2	-	-	•	·		-	-	50	50	100	100
VE22M205	Embedded Systems Lab-II	-	-	4	2	-	-				-	-	20	30	50	50
-	-	То	tal		24	-	-				•	500		•	200	700

Course Code	Course Title	Contact Hours per Week		Credits		Theor	y				Practical					
		L				ETE	MS E	AS G	T A	ATT D	ES E	Tota l	CE	ESE	Tota l	Gran d Total
MO22M301	MOOC-1	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100
MO22M302	MOOC - 2	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100
VE22M303	Dissertatio n Phase-I	-	-	2 4	12	2		-	<u> </u>	<u> </u>	-	-	15 0	15 0	300	300
-	-	To	tal		20		-				1	-	-	1	-	500

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CEcontinuous Evolution

						Second	Year –	Semeste	r Fou	rth						
Course Code	Course Title	Ho	nta ours r W		Credit s	E Dur (Ho	Theor	y					Pract	ical		
		L	Т	P		ETE Duration (Hours)	MS E	AS G	T A	ATT D	ES E	Tota l	CE	ESE	Tota l	Grand Total
VE22M401	Dissertation Phase-II	-	-	32	16	2		-	1		-	-	25 0	25 0	500	500
-	-	То	tal		16		-				1	-	-	1	-	500

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam, CEcontinuous Evolution

Master of Technology (VLSI DESIGN & EMBEDDED SYSTEM)

2 Years Degree Program

Curriculum Components

Components	Credits
Program Core (11 Courses)	34
Program Electives (Discipline Specific Electives) (04Courses)	12
Project Based Learning (PBL) (02 courses)	04
MOOCs (02 courses)	08
Dissertation (02 Courses)	28
Total	86

Distribution of credits across all components

SEM No.	Programme Core	Discipline Specific Electives (DSE)	Project Based Learning (PBL)	MOOCs	Dissertation	Total Credit
I.	18	6	2		-	26
II.	16	6	2		-	24
III.	-	-		8	12	20
IV.	-	-		-	16	16
Total	34	12	4	08	28	86

List of Program Discipline Specific Electives (DSE)

		First Year – Semester One (DSE-I)
SN	Course	Course Title
	Code	
1.	VE22M107	Advanced Digital Signal Processing
2.	VE22M108	Design for Testability
3	VE22M109	CMOS RF Circuit Design
		First Year – Semester One (DSE-II)
SN	Course Code	Course Title
1.	VE22M110	Device Modelling
2.	VE22M111	Real Time Embedded System
3	VE22M112	Advanced logic design
		First Voor Comestor Second (DSF III)
CNI	Course Code	First Year – Semester Second-(DSE-III)
SN		Course Title
1.	VE22M206	CMOS mixed signal circuit design
2.	VE22M207	Embedded Networking
3.	VE22M208	Digital System Design
	L	First Year – Semester Second-(DSE-IV)
1	VE22M209	Embedded LINUX
2	VE22M210	System on Chip Design
3	VE22M211	Semiconductor Memory Design and Testing
	<u> </u>	

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

Syllabus

For

M.Tech

VLSI DESIGN & EMBEDDED SYSTEM

I Semester

School of Engineering & Technology

Coo	de	VLSI Technology and Design	Total Lectu	re:45
			Tutorial:	15
VE22N	M101	3	3 - 1 - 0 = 4	
Course	e Objec	ctives		
	•] •] •]	To introduce microelectronics and MOS technologies. To realize importance of layout design and tools. To study combinational logic networks. To learn sequential systems. To nurture students with floor planning methods.		
Unit		Contents		Hours
1	TEC Prop Thre	/IEW OF MICROELECTRONICS AND INTRODUCT CHNOLOGIES: MOS, CMOS, BiCMOS Technology. E perties of MOS, CMOS & BiCMOS Circuits: Ids – Vds eshold Voltage VT, Gm, Gds and ωo, Pass Transistor, MO OS Inverters, MOS Transistor circuit model, Latch-up in C	Basic Electrical s relationships, S, CMOS & Bi	8
2	Scal LAY	YOUT DESIGN AND TOOLS: Transistor structures, W able Design rules, Layout Design tools. LOGIC YOUTS:Static Complementary Gates, Switch Logic, Al uits, Low power gates, Resistive and Inductive interconnec	GATES & lternative Gate	10
3	dela	MBINATIONAL LOGIC NETWORKS:Layouts, Simula y, Interconnect design, Power optimization, Switch logic : Network testing.	-	
4		UENTIAL SYSTEMS: Memory cells and Arrays, Clock ign, Power optimization, Design validation and testing.	ing disciplines,	10
5		OOR PLANNING: Floor planning methods, Global Inter Design, Off-chip connections.	connect, Floor	07

	Course Outcomes
At the end of	the course the students should be able to:
CO 1	Define ¹ The microelectronics and introduction to MOS technologies.
CO 2	Analyse ⁴ The layout design and tools of transistor and logic gates.
CO 3	Design⁶ The analog & digital CMOS circuits for specified applications.
CO 4	Explain² The Dynamic Logic Circuit Concepts and CMOS Dynamic Logic Families.
CO 5	Describe ² The operation of combinational circuits, sequential circuits and floor planning methods.
Text Books	 Eshraghian. K, Pucknell D, A, (2005), Essentials of VLSI Circuits and Systems, PHI. Prasad K.V.K.K, Kattula Shyamala, 2012, VLSI Design, Learning Solutions Inc. Wayne Wolf, 1997, Modern VLSI Design, Pearson Education.
Reference Books	 Ming-BO, 2011, Lin, Introduction to VLSI Systems: A Logic, Circuit and System, Perspective, CRC Press, . Randall L.Geiger, Phillip E.Allen, Noel R.Strader, 2010, VLSI Design Technologies for Analog and Digital Circuits, TMH Publications. Weste N.H.E, Eshraghian. K, Principals of CMOS VLSI Design, Addison Wesley.

Code	CPLD and FPGA Architectures	Total Lectu Tutorial:	
VE22M102	3	0 - 1 - 0 = 4	
Course Obje	ctive-		
•]	Fo introduce Programmable Logic Devices. \Box		
•]	To make students familiar with FPGA/CPLD Architectures.		
•]	To study finite state machines (FSM).		
•]	To make students aware of FSM Architectures		
•]	Fo learn System Level Design.		
Unit	Contents		Hours
1	Programmable Logic Device And Complex Program Devices (CPLD): ROM, PLA, PAL, PLD, PGA programming and applications using complex progra devices Altera series – Max 5000/7000 series and Altera 10000 series CPLD, AMD's – CPLD (Mach 1 to 5); C 370 Device Technology, Lattice LSI's Architectures – Speed Performance and in system programm Programmable Gate Arrays (FPGA) Field Programmable Logic blocks, routing architecture, Design flow, Techno for FPGAs.	 Features, FLEX logic FLEX logic – Cyprus FLASH 3000 Series – ability. Field Gate Arrays – blogy Mapping 	10
2	FPGA/CPLD Architectures: Xilinx XC4000 & ALT 8000/10000 FPGAs: AT & T – ORCA's (Optimized) Cell Array): ACTEL's – ACT-1, 2, 3 and their speed po	Reconfigurable	/
3	Finite State Machines (FSM): Top Down Design – S Table, state assignments for FPGAs. Problem of initial st for one hot encoding. Derivations of state machine charg of state machine charts with a PAL. Alternative realize machine chart using microprogramming. Linked state m Hot state machine, Petrinets for state machines – b properties, extended petrinets for parallel controllers Machine – Case Study, Meta Stability, Synchronization.	ate assignment es. Realization cation for state achines. One – pasic concepts, s. Finite State	10
4	Fsm Architectures: Architectures centered around non-re PLDs. State machine designs centered around shift regis Hot design method. Use of ASMs in One – Hot design. A One – Hot method.	ters. One –	8

5	System Level Design: Controller, data path and functional partitions, Parallel adder cell, parallel adder sequential circuits, counters, multiplexers, parallel controllers.	10
	Course Outcomes	
	At the end of the course the students should be able to:	
CO 1	Discover¹ Knowledge about various architectures and device technologies of PLD's.	
CO 2	Interpret ³ FPGA Architectures.	
CO 3	Describe ² FSM and different FSM techniques like petrinets & different case studies.	
CO 4	Explain² FSM Architectures and their applications.	
CO 5	Analyze⁴ System level Design and their application for Combinational and Sequential Circuits.	
Text Books	 Chan. P. K. and Mourad. S, (1994), Digital Design Usin Programmable Gate Array, Prentice Hall (Pte). Brown.S., Francis.R., RoseJ., Vransic. Z, (1992), Programmable Gate Array, Kluwer Publications. 	g Field Field
Reference Books	 Old Field. J, Dorf. R., (1995), Field Programmable Gate John Wiley & Sons, New York. Trimberger. S., (1994), Field Programmable Gate Technology, Kluwer Academic Publications. Bob Zeidman, (2002), Designing with FPGAs & CPLD Books. 	Array

Code	Embedded Systems	Total Lectu Tutorial:	
VE22M10.	3 3	6 - 1 - 0 = 4	
Course Ob	jective:		
•	To learn about embedded system.		
•	To study 8051 micro-controller.		
•	To analyze 8051 micro-controller instruction set and address	sing modes.	
•	To introduce 8051 Interfacing and Applications.		
•	To make students familiar with different advanced micro-co	ontrollers.	
Unit	Contents		Hours
1	Introduction to Embedded system, Embedded System Proje	ect	10
1	Management, ESD and CO design issues in System develo		10
	Process, Design cycle in the development phase for an emb	bedded system,	
	Use of target system or its emulator and In-circuit emulator	r, Use of	
	software tools for development of an ES.		
-	8051 Micro-controller: Microprocessor V/s Micro-controlle	er 8051	
2	Micro-controller: General architecture; Memory organizati		10
	ports & circuits; Counters and Timers; Serial data input/out	-	
	Interrupts.	-p,	
	1		
3	8051 Instructions: Addressing Modes, Instruction set: Data	Move	9
-	Operations, Logical Operations, Arithmetic Operations, Jun	mp and Call	-
	Subroutine, Advanced Instructions.		
4	8051 Interfacing and Applications: Interfacing External Me	emory,	0
4	Keyboard and Display Devices: LED, 7-segment LED disp	=	8
		_	
5	Advanced Micro-controllers: Only brief general architectur		8
	PIC and ARM micro-controllers; JTAG: Concept and Boun	ndary Scan	
	Architecture.		
	Course Outcomes		
	At the end of the course the students should be able to:		
CO 1	Label ¹ and list the signals, architecture of micro-controlle	r, interfacing	
	devices and embedded systems.	C C	
			L

CO 2	Understand ² The operations, internal functions of micro-controller, interfacing circuit and characteristic details of embedded systems architectures.	
CO 3	Describe ² The architecture of 8051 micro-controller.	
CO 4	Develop³ The circuit and demonstrate programming proficiency for interface the micro-controller with external devices.	
CO 5	Analyse ⁴ The operation of advanced micro-controllers.	
Text Books	 Raj Kamal, (2006), Embedded Systems TMH, Ayala. K, (2007), The 8051 Micro-controller, 3rd Ed., Thomson Delmar Learning. Ghoshal. S, (2010), 8051 Micro-controller, Pearson Education. Uma Rao. K and Pallavi. A, (2009), The 8051 Micro-controllers by Pearson Ed. 	
Reference Books	 Raj Kamal, (2005), Micro-controllers, Pearson Education. Huang H.W, (2007), PIC Micro-controller, Delmar CENGAGE Learning,. Peatman J. B, (1997), Design with PIC Micro-controllers, Prentice Hall. 	

Code	Digital VLSI Design Lab	Total Lecture:30
VE22M104	List Of Experiments	0 - 0 - 2 = 2
1	Design CMOS Inverter.	
2	Design CMOS AND Gate.	
3	Design CMOS OR Gate.	
4	Design CMOS NAND Gate.	
5	Design CMOS EX-OR Gate.	
6	Design CMOS EX-NOR Gate	
7	Design SR NAND Latch.	
8	Design SR NOR Latch.	
9	Design CMOS Invert Layout.	
10	Design CMOS NOR Gate	

Code	Embedded System-I Lab 1	Total Lecture:30
VE22M105	List Of Experiments	0-0-2=2
1	Design With 8 bit Microcontrollers 8051 pic micr Assembly and C Programming: IO Programming. Time	
2	Interrupts: Serial port programming with 8051 PIC microcontrollers. Assembly and C Programming.	
3	PWM Generation Motor Control: ADC DAC with 8051 PIC Micro- controllers-Assembly and C programming.	
4	LCD and RTC interfacing: Sensor Interfacing 8051 PIC Micro-controllers- Assembly and C Programming.	
5	Design with 16-bit Processors: Timers, Interrupts, Se	rial Communication.
6	Design with ARM Processors: I\O Programming Interrupts.	g, ADC DAC, Timers,
7	Study of one type of real time Operating system (RTO	S).
8	Simple wired wireless network simulation using NS2	Software.
9	Programming of TCP IP protocol stack.	

Code	Electronic Design Automation Lab	Total Lecture:30
VE22M106	List of Experiments	0 - 0 - 2 = 2
1	Write the Code using VERILOG, Simulate and synt Arithmetic Units: Adders and Subtractors.	hesize the following 1.
2	Write the Code using VERILOG, Simulate and synthesize Multiplexers and Demultiplexers.	
3	Write the Code using VERILOG, Simulate and synthesize Encoders, Decoders, Priority Encoder and Comparator.	
4	Write the Code using VERILOG, Simulate and synthesize 8-bit parallel adder using 4-bit tasks and functions.	
5	Write the Code using VERILOG, Simulate and syn Logic Unit with minimum of eight instructions.	thesize Arithmetic and
6	Write the Code using VERILOG, Simulate and synth	esize Flip-Flops.
7	Write the Code using VERILOG, Simulate and synth	esize Registers.
8	Write the Code using VERILOG, Simulate and Detector using Mealy type state machines.	synthesize Sequence
9	Write the Code using VERILOG, Simulate and Detector using Moore type state machines.	synthesize Sequence
10	Write the Code using VERILOG, Simulate and syntl	nesize Counters.

Interference of signal 1 receiving 3 - 0 - 0 = 3 Course Objective: • To introduce students with Overview of the signal processing of Deterministic signal • To introduce students with the Including digital filter design, • To introduce students with the Transform-domain processing and importance of Sig Processors. • To make students aware about the meaning and implications of the properties of sys signals Unit Contents 0 Overview of the signal processing of Deterministic signals: Time domair and frequency domain response of the linear-shift invariant systems 1 Overview of the signal processing of Deterministic signals: Time domair and frequency domain response of the linear-shift invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: 2 Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique spectral estimations. 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes	ure:45	Total Lectur	Code	
Course Objective: • To make students familiar with the most important methods in DSP • To introduce students with Overview of the signal processing of Deterministic signal • To introduce students with the Including digital filter design, • To introduce students with the Transform-domain processing and importance of Sig Processors. • To make students aware about the meaning and implications of the properties of sys signals Unit Contents 1 Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: 2 Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique spectral estimations. 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes	ure:45	Total Lectur	VE22M107	
 To make students familiar with the most important methods in DSP To introduce students with Overview of the signal processing of Deterministic signal To introduce students with the Including digital filter design, To introduce students with the Transform-domain processing and importance of Sig Processors. To make students aware about the meaning and implications of the properties of systems signals Unit Contents Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 		0 - 0 - 0 = 3		
 To introduce students with Overview of the signal processing of Deterministic signal To introduce students with the Including digital filter design, To introduce students with the Transform-domain processing and importance of Sig Processors. To make students aware about the meaning and implications of the properties of syssignals Unit Contents Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: 			Course Obje	
 To introduce students with the Including digital filter design, To introduce students with the Transform-domain processing and importance of Sig Processors. To make students aware about the meaning and implications of the properties of sys signals Unit Contents Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bi- linear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 				
 To introduce students with the Transform-domain processing and importance of Sig Processors. To make students aware about the meaning and implications of the properties of syssignals Unit Contents Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes 		ninistic signals		
Processors. To make students aware about the meaning and implications of the properties of system signals Unit Contents 1 Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: 1 Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes	1	rtance of Signal		
• To make students aware about the meaning and implications of the properties of systignals Unit Contents 1 Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: 2 Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non parameted methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Filter Bank methods.	.1	tance of Signal		
Unit Contents 1 Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes	ms and	perties of systems		
1 Overview of the signal processing of Deterministic signals: Time domain and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes				
1 and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes	Hours		Unit	
and frequency domain response of the linear-shift invariant systems 2 IIR Filter Design: Filter Approximation, Impulse Invariant Method, Bilinear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes	12	ime domain	1 Ov	
 linear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various techniqu Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 	12	/stems	an	
 ² linear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. ³ Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various techniqu ⁴ Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 				
 ² linear Transformation method filter structures, Finite word length effects limitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. ³ Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various techniqu ⁴ Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 		ethod Bi-		
Iimitations of IIR filters. FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. 3 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various techniqu 4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods.	12		2	
Linear phase response, Windowing technique, Gibb's Phenomenon, Frequency Sampling Method, FIR Filter structures. Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various techniqu Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes		-B,		
Frequency Sampling Method, FIR Filter structures. Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various techniqu Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes				
 Power Spectrum Estimation, Classical Spectral Estimation, Non paramet methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various techniqu Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 		nenon,	Li	
 methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 			Fr	
 methods for power spectrum estimation: Bartlet method, Welch method, Blackman and Tuckey method, performance analysis of various technique Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. 		on parametric	- Po	
Blackman and Tuckey method, performance analysis of various technique Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes	12	-	3	
4 Parametric Modeling - AR, MA, ARMA methods, Minimum variance spectral estimations. Filter Bank methods. Course Outcomes				
 spectral estimations. Filter Bank methods. Course Outcomes 	-			
spectral estimations. Filter Bank methods. Course Outcomes	9	variance	4 Pa	
Course Outcomes			sp	
Course Outcomes			17:11	
			F1.	
At the end of the course the students should be able to:			At	
			1	

CO 1	Understand² Use concepts of trigonometry, complex algebra, Fourier transform, z-transform to analyze the operations on signals and acquire knowledge about Systems.	
CO 2	Remembering ¹ Select proper tools for analog-to-digital and digital-to-analog conversion. Also select proper tools for time domain and frequency domain implementation.	
CO 3	Creating ⁶ The Design, implementation, analysis and comparison of digital filters for processing of discrete time signals.	
CO 4	Apply ³ Integrate computer-based tools for engineering applications.	
CO 5	Creating ⁶ The Employ signal processing strategies at multidisciplinary team activities. Assess the techniques, skills, and modern engineering tools necessary for analysis of different electrical signals and filtering out noise signals in engineering practice.	
Text Books	 Proakis.G. J and Manolakis D. G, Digital Signal Processing, Principles, Algorithms andApplications, 4th ed. Pearson Education. S. K. Mitra, Digital Signal Processing, 3rd ed. TMH. 	
Reference Books	 A.V. Oppenheim and R.W. Schafer, (1992), Discrete Time Signal Processing, PHI. Steven M. Kay, (1988), Modern Spectral Estimation, PHI. Clark Cory.L, (2005), Lab view DSP and Digital comm, TMH. Roman Kuc, (1988), Introduction to Digital Signal Processing, McGraw Hill. 	

Code	Discipline Specific Elective- II	Total Lectu	ıre:45
VE22M1	08 Design For Testability	3 - 0 - 0 = 3	
	Course Objective-		
•	To introduce Philosophy and role Testing.		
•	To study about Logic and Fault Simulation.		
•	To make students aware about Testability Measures.		
•	To learn about Built-In Self-Test.		
•	To make students familiar about Boundary Scan Standard.		
Unit	Contents		Hours
	Introduction to Testing: Testing Philosophy, Role of Tes	ting, Digital and	10
1	Analog VLSI Testing, VLSI Technology Trends affecting	0 0	10
	Testing, Fault Modeling: Defects, Errors and Faults, Functional Versus		
	Structural Testing, Levels of Fault Models, Single Stuck-at F	ault.	
2	Logic and Fault Simulation: Simulation for Design Verification and Test		
	Evaluation, Modeling Circuits for Simulation, Algorithm Simulation, Algorithms for Fault Simulation, ATPG.	s for True-value	
	Simulation, Algorithms for Pault Simulation, ATPO.		
3	Testability Measures: SCOAP Controllability and Observab	oility, High Level	10
5	Testability Measures, Digital DFT and Scan Design: Ad-He	oc DFT Methods,	10
	Scan Design, Partial-Scan Design, Variations of Scan.		
	Built-In Self-Test: The Economic Case for BIST, Rando	m Logio DICT.	
4	Definitions, BIST Process, Pattern Generation, Response Cor	•	8
	Logic Block Observers, Test-Per-Clock, Test-Per Scan BIST	* ·	
	Self Test Path System, Memory BIST, Delay Fault BIST.	Systems, Chould	
5	Boundary Scan Standard: Motivation, System Configuration	-	7
	Scan: TAP Controller and Port, Boundary Scan Test		
	Constraints of the Standard, Boundary Scan Description I	Language: BDSL	
	Description Components, Pin Descriptions.		

	Course Outcomes			
At the en	nd of the course the students should be able to:			
CO 1	Identify ² The problems associated with testing of semiconductor circuits at earlier design levels so as to significantly reduce the testing costs			
CO 2	Understand² The Simulation for Design Verification, Test Evaluation and Fault Simulation.			
CO 3	Analyze4 The various Trade-Offs and Techniques for Test ability.			
CO 4	Explain2 The concepts of built-in-self-test II.			
CO 5	Illustrate3 The Boundary Scan Standard.			
Text Books	 Bushnell M. L, Agrawal V. D, (2005), Essential of Electronic Testing for Digital, Memory and Mixed Signal VLSI Circuits, Kluwer Academic Publishers. Miron Abramovici, Melvin A. Breur, Arthur D.Friedman, (2001), Digital Systems Testing and Testable Design, Jaico Publishing House. Alfred Crouch, Design for Test for Digital ICs & Embedded Core Systems, Prentice Hall. 			
Refere nce Books	Testing , Prentice Hall.			

Code	Discipline Specific Elective- I Total Lectur Tutorial:	
VE22M10	9 CMOS RF Circuit Design $3-0-0=3$	
C	ourse Objective :	
 To introduce RF Design and Wireless Technology. To learn about RF Modulation: Analog and digital modulation of RF circuit To make students aware about RF Testing. To study about BJT and MOSFET behavior at RF Frequencies. To make students familiar with RF Circuits Design: 		
Unit	Contents	Hours
1	Introduction to RF Design and Wireless Technology: Design and Applications, Complexity and Choice of Technology. Basic concepts in RF design: Nonlinearly and Time Variance, Inter symbol interference, random processes and noise. Sensitivity and dynamic range, conversion of gains and distortion	0

	DE Madulation. Analog and digital modulation of DE singuita. Companian	
2	RF Modulation: Analog and digital modulation of RF circuits, Comparison	10
	of various techniques for power efficiency, Coherent and non-coherent	
	detection, Mobile RF communication and basics of Multiple Access	
	techniques. Receiver and Transmitter architectures, Direct conversion and	
	two-step transmitters	
3	RF Testing: RF testing for heterodyne, Homodyne, Image reject, Direct IF	7
	and sub sampled receivers.	
4	BJT and MOSFET behavior at RF Frequencies: BJT and MOSFET behavior	10
-	at RF frequencies, modeling of the transistors and SPICE model, Noise	10
	performance and limitations of devices, integrated parasitic elements at high	
	frequencies and their monolithic implementation	
	DE Circuite Design Operations of DE Either design Astice DE services of 8	
5	RF Circuits Design: Overview of RF Filter design, Active RF components &	10
	modeling, Matching and Biasing Networks. Basic blocks in RF systems and	
	their VLSI implementation, Low noise Amplifier design in various	
	technologies, Design of Mixers at GHz frequency range, Various mixers	
	working and implementation. Oscillators- Basic topologies VCO and	
	definition of phase noise, Noise power and trade off. Radio frequency	
	Synthesizers- PLLS, Various RF synthesizer architectures and frequency	
	dividers, Design issues in integrated RF filters.	
	Course Outcomes	
At the end	of the course the students should be able to:	
CO 1	Understand² The RF Design and Wireless Technology.	
CO 2	Analyze⁴ The Analog and digital modulation of RF circuits.	
CO 3	Discuss ² The RF testing for heterodyne, Homodyne	
_		
CO 4	Explain² The BJT and MOSFET behavior at RF Frequencies.	
CO5	Design ⁶ The RF filters circuit.	
005		
Text	• Razavi. B, (1998), RF Microelectronics , PHI.	
D 1		_
Books	• Jacob Baker. R, Li H.W, Boyce D.E, (2007), CMOS Circuit Design, layou	it and

	• Bowick, (2007), RF Circuit Design , 2nd Edition, Newnes.
Reference Books	 Thomas H. Lee, (1998), Design of CMOS RF Integrated Circuits, Cambridge University press. Tsividis Y.P, (1996), Mixed Analog and Digital Devices and Technology, TMH. Ludwig, (2011), RF Circuit Design Theory And Application, Pearson.

Code	Discipline Specific Elective- II	Total Lectu	re:45
VE22M110	Device Modelling	3-0-0	= 3
Course Obj	ective:		
•	To make students familiar with MOS Capacitor		
•	To learn MOS Characteristics and Non idealities.		
•	To study about Small signal modeling for low frequency and	d High frequen	cy
•	To introduce The bipolar transistor and		
•	To make students aware about FinFETs and VI Characterist	ics.	
Unit	Contents		Hours
1	MOS Capacitor: Energy band diagram of Metal-Oxide-Sec contacts, Mode of Operations: Accumulation, Depletion, M Inversion, 1D Electrostatics of MOS, Depletion Approxim Accurate Solution of Poisson's Equation.	Aid gap, and	10
2	MOS Capacitor Characteristics and Non idealities: CV characteristics of MOS, LFCV and HFCV, Non idealities in MOS, oxide fixed charges, interfacial charges.		8
3	The MOS transistor: Small signal modeling for low freque frequency, Pao-Sah and Brews models; Short channel effe transistors.		7
4	The bipolar transistor: Eber's-Moll model; charge control signal models for low and high frequency and switching cl Signal-space dimensionality and processing gain		10
5	FinFETs: I-V characteristics, device capacitances, parasitie extension regions, performance of simple combinational ga amplifiers, novel circuits using FinFETs and GAA devices	ates and	10
	Course Outcomes		I
At the end o	f the course the students should be able to:		
CO 1	Extend² The depth knowledge in various characteristics of Transistors.	f MOS	

CO 2	Analyze ⁴ The complex MOS device structures.
CO 3	Design⁶ The engineering problems with wide range of solutions in different MOSFET technologies.
CO 4	Identify ¹ The characteristic of MOSFET in dynamic operation
CO 5	Apply³ The appropriate techniques, resources and tools to engineering activities in modeling MOS structures.
Text Books	 Sze. S. M, (1981), Physics of Semiconductor Devices, 2nd Edition, Wiley Eastern, Tsividis. Y. P, (1987), Operation and Modelling of the MOS Transistor, McGraw-Hill. Nandita Das Gupta and Amitava Das Gupta, Semiconductor Devices, PHI.
Reference Books	 Takeda. E, (1995), Hot-carrier Effects in MOS Transistors, Academic Press. Colinge. P, (2009), FinFETs and Other Multi-Gate Transistors, Springer. S. Tyagi, (2008), Introduction to Semiconductor Materials and Devices, Wiley.

Co	de	Discipline Specific Elective- II	Total Lectu	re:45
VE22N	A 111	Real Time Embedded System	3 - 0 - 0 = 3	
 Course Objectives This course will enable students to: Understand basics of Real Time systems Distinguish a real-time system with other systems. Identify the functions of operating system. Evaluate the need for Real time operating system. Design and develop embedded applications by means of real-time oper systems. 			erating	
Unit		Contents		Hours
1	Systen Analys Schedu	uction to Real-Time Embedded Systems: Brief history ns, A brief history of Embedded Systems. System Resou sis, Real-Time Service Utility, Scheduling Classes, The Cy uler Concepts, Preemptive Fixed Priority Scheduling Polic nread Safe Re-entrant Functions.	rces: Resource clic Executive,	10
2	upper Policy Interm	sing: Preemptive Fixed-Priority Policy, Feasibility, Rate bound, and Necessary and Sufficient feasibility, Deadline, Dynamic priority policies. I/O Resources: Worst-case E ediate I/O, Execution efficiency, I/O Architecture. Men chy, Capacity and allocation, Shared Memory, ECC Men as.	e – Monotonic Execution time, nory: Physical	10
3	protec Deadli	resource Services: Blocking, Deadlock and livestock, Crit t shared resources, priority inversion. Soft Real-Time Se nes, QoS, and Alternatives to rate monotonic policy, Mixe ne services.	rvices: Missed	
4	mecha Excep	Ided System Components: Firmware components, RTOS s nisms, Software application components. Debugging tions assert, Checking return codes, Single-step debu ler traces, Test access ports, Trace ports, Power-Or ostics.	Components: 1gging, kernel	
5	profili	mance Tuning: Basic concepts of drill-down tuning, hardwang and tracing, Building performance monitoring into . High availability and Reliability Design: Reliability and	software, Path	

Similarities and differences, Reliability, Reliable software, Available software, Design tradeoffs, Hierarchical applications for Fail-safe design			
	Course Outcomes		
At the end of	f the course the students should be able to:		
CO 1	Analyze ⁴ The Real time operating systems		
CO 2	Understand² Describe the functions of Real time operating systems		
CO 3	Understand² The Demonstrate embedded system applications		
CO 4	Creating⁶ The Design a Real Time operating system		
CO 5	Analyze ⁴ The performance tuning: basic concepts		
Text Books	Sam Siewert (2007): Real-Time Embedded Systems and Components Cengage Learning India Edition		
Reference Books	 Krishna CM and Kang Singh G. (2003): Real time systems, Tata McGraw Hill. Qing Li and Carolyn Yao, (2003): Real-Time Concepts for Embedded Systems, CMP Books. Jane W. S. Liu, (2000): Real Time Systems, Prentice Hall. Phillip A. Laplante, (2004): Real-Time Systems Design and Analysis, John Wiley & Sons, 		

Code	Discipline Specific Elective- II	Total Lectu	re:45
VE22M112	Advanced Logic Design	3 - 0 - 0 = 3	3
To maTo stu	 To Introduce to logic circuit and Verilog. To make students familiar about Verilog data types and operators. To study Verilog specifications of combinational circuits. To learn about Synchronous sequential circuits. 		
Unit	Contents		Hours
1	Introduction to logic circuit and Verilog, Implementation CMOS logic gates, programmable logic device implementations of logic functions, canonical representation maps, factoring, functional decomposition, NAND/N bubble pushing.	s. Optimized ions, Karnaugh	
2	Verilog data types and operators, modules and ports, gate time simulation/ scheduler. Circuit issues. Verilog behan number representation and arithmetic circuits, positional mumbers, arithmetic operations.	vioral models,	15
3	Verilog specifications of combinational circuits, comb building blocks, encoders/decoders, arithmetic comparison latch, gated SR and D latch, master-slave and edge-trigg counters, shift registers, Design examples, introduction machines; introduction to Model Sim.	n, etc. The basic ered flip flops,	0
4	Synchronous sequential circuits, design process, stat hazards, glitches, asynchronous design, Metastability, M Power, fan-out, skew Finite state machine design examples representations.	Noise margins,	
Course Outcomes			
At the end of the course the students should be able to:			
CO 1	Define¹ The role of optimization and ability to apply m multi-level optimizations in digital circuit design.	ulti-output and	

CO 2	Design⁶ The asynchronous sequential circuits using systematic approaches.
CO 3	Explain ² the basic process of VLSI testing, stuck-at fault model, fault simulation and the concept of design-for-test methodologies (scan and built-in self-test).
CO 4	Analyze ⁴ The graph-based algorithms and linear programming for scheduling, binding and resource sharing in high-level synthesis.
CO 5	Demonstrate² VHDL/Verilog and CAD tools for optimization, simulation and synthesis
Text Books	 John F. Wakerly, Digital Design, Pearson Education Asia, 3rd Ed. Mano. M. M, Digital Design, Pearson Education, 3rd Ed. Roth C. H, Jr., Fundamentals of Logic Design, Jaico Publishing House. Fletcher, An Engineering Approach to Digital Design, PHI.
Reference Books	 Stephen Brown and Zvonko Vranesic, (2003), Fundamentals of Digital Logic with Verilog Design, McGraw-Hill Higher Education. Samir Palnitkar, (2003), Verilog HDL, Prentice Hall, 2nd Edition. Yarbrough J. M, Digital Logic, Thomson Learning.

COURSE CODE	PROJECT BASED LEARNING-I Total Lecture:30 Practical:30	
PB22M101	0-0-4=2	
Learning Objectives:	 Integrating the knowledge and skills of various courses on the basis of multidisciplinary projects Develop the skill of critical thinking and evaluation. To develop 21st century success skills such as critical thinking, problem solving, communication, collaboration and creativity/innovation among the students. To enhance deep understanding of academic, personal and social development in students. Employ the specialized vocabularies and methodologies. 	
	Course Outcome	
At the en	d of the course the students will be able to:	
Course Outcomes:	 Apply³a sound knowledge/skills to select and develop their topicand project respectively. Develop⁶ plans and allocate roles with clear lines of responsibilityand accountability. Design⁶ solutions to complex problems following a systematic approach like problem identification, formulation and solution. Collaborate⁶ with professionals and the community at large in written and in oral forms. Correlate⁴ the knowledge, skills and attitudes of a professional. 	
General Guidelines:	 PBL will be an integral part of UG/PG Programs at different levels. Each semester offering PBL will provide a separate Course Code, twocredits will be allotted to it. Faculty will be assigned as mentor to a group of 30 student's minimum byHoS. Faculty mentor will have 4 hours/week to conduct PBL for assigned students. Student will select a topic of their choice from syllabus of any course offered in respective semester (in-lines with sustainable development goals). Student may work as a team maximum 3 or minimum 2 members for single topic. For MSE, student's performance will be assessed by panel of three experts either from other department/school, or from samedepartment/school based on chosen topic. 	

1. Introduction
2. Review of literature
3. Methodology
4. Result and Discussion
5. Conclusion and Project Outcomes
6. References
• Student will need to submit three copies for
1. Concerned School
2. Central Library
3 Self
5. 501
• The integrity of the report should be maintained by student. Any malpractice
will not be entertained.
• Writing Ethics to be followed by student, a limit of 10 % plagiarism is
 2. Central Library 3. Self The integrity of the report should be maintained by student. Any malpractice will not be entertained. Writing Ethics to be followed by student, a limit of 10 % plagiarism is permissible. Plagiarism report is to be attached along with the report. Project could be a case study/ analytical work /field work/ experimental work/ programming or as per the suitability of the program.

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

Syllabus

For

M.Tech

VLSI DESIGN & EMBEDDED SYSTEM

II Semester

School of Engineering & Technology

Code	Embedded System Design-II	Total Lectu Tutorial=		
VE22M201	t	3 - 1 - 0 = 4		
Course Ob	jective-			
•	To learn about The PIC Microcontroller Architecture.			
•	To make students aware about PIC hardware features.			
•	To study programming with PIC. \Box			
•	To introduce Hardware Interfacing and Applications:			
•	To give overview to students about ARM processor fundam	entals.		
Unit	Contents		Hours	
1	THE PIC MICROCONTROLLER ARCHITECTURE: CPU, Movement, The Program Counter and Stack, Reset, Interrup Architecture Differences, Mid-Range instruction Set.		8	
2	PIC HARDWARE FEATURES :Power Input and Decouplin Watchdog Timer, System Clock/Oscillators, Configuration R Sleep, Hardware and File Registers, Parallel Input Output, Ir Prescaler, The OPTION Register, Mid-Range Built-In EEPI Access,	egisters, nterrupts,	10	
	TMR1 andTMR2 Serial I/0, Analog I/0, Parallel Slave Port (Memory Connections, In-Circuit Serial Programming (ISCP)			
3	PROGRAMMING WITH PIC :Assembly Language Program File Format, Code-Protect Features, Programming, PIC Emu	-	7	
4	HARDWARE LNTERFACING :Estimating Application Pow Requirements, Reset, Interfacing to External Devices, LEDs, Bounce, Matrix Keypads, LCDs, Analog I/O, Relays and So and Stepper Motors, Servo Control Serial Interfaces.	Switch	10	
5	ARM PROCESSOR FUNDAMENTALS: Registers, State ar Sets, Pipeline, Memory Management, Introduction to the AR Set.		10	
	Course Outcomes			
	At the end of the course the students should be able to:			

CO 1	Understand ² The PIC MICROCONTROLLER ARCHITECTURE.	
CO 2	Analyse ⁴ The PIC Micro-controller hardware features.	
CO 3	Demonstrate ³ The assembly language PROGRAMMING with PIC.	
CO 4	Discuss² The Hardware Interfacing and its Applications. □	
CO5	Explain ² The ARM processor fundamentals.	
Text Books	 Myke Predko, (2007), Programming and customizing PIC Micro-controller, Mc- Graw Hill. Raj Kamal, (2006), Embedded Systems, TMH. Lyla b. das, (2012), Embedded Systems- An integrated approach, Pearson education 	
Reference Books	 John.B. Peatman, (2003), Design with PIC Microcontroller, Pearson Education. Steave Furber, (2000), ARM system – on – Chip Architecture, Addison Wesley. Shibu. K. V, (2009), Introduction to Embedded Systems, Mc Graw Hill Education. 	

Code		Total Lecture:45 Tutorial: 15	
VE22M202	3 - 1 - 0 = 4		
To provTo famiTo prov	tive- duce basic knowledge of low voltage device modelling ide overview of low voltage, low power VLSI CMOS circuit design liarize the students with the modelling and simulation ide strong foundation logic synthesis and verification duce students with the high –level synthesis		
Unit	Contents	Hours	
1	LOW POWER DESIGN, AN OVER VIEW : Introduction to low – voltage low power design, limitations, silicon –on-Insulator	10	
2	GENERAL PURPOSE METHODS FOR COMBINATIONAL OPTIMIZATION: Backtracking branch and bound, Dynamic programming, Integer linear programming, Local search, simulated annealing, tabu search, Genetic Algorithms.	10	
3	Layout compaction, Placement, Floor planning and Routing problems, Concepts and algorithms. MODELLING AND SIMULATION: Gate level modelling and simulation, Switch level modelling and simulations.	10	
4	LOGIC SYNTHESIS AND VERIFICATION : Basic issues and terminology, Binary decision diagrams, two–level logic synthesis.	8	
5	HIGH –LEVEL SYNTHESIS: Hardware models, Internal representation of the input algorithm, Allocation assignment and scheduling, some Scheduling Algorithms, some suspects of Assignment problem, High level transformations.	7	
	Course Outcomes		
	At the end of the course the students should be able to:		
CO 1	Understand² The low power design and different sources of power dissipation.		
CO 2	Explain ^{2} The various low power design approaches and techniques.		

CO 3	Analyze ⁴ The various types of low power adders.	
CO 4	Apply ³ The different low power techniques for designing multipliers.	
CO 5	Design⁶ The various Hardware models, Internal representation of the input algorithm.	
Text Books	 Sung-Mo Kang, Yusuf Leblebici, (2011), CMOS Digital Integrated Circuits: Analysis and Design, MH Professional Engineering. Kiat-Seng Yeo, Kaushik Roy, Low-Voltage, Low-Power VLSI Subsystems, MH Professional Engineering. Pal, Ajit, (2015), Low-Power VLSI Circuits and Systems, Springer. 	
Reference Books	 Sung-Mokang and Yusuf leblebici, (2003), CMOS Digital ICs, 3rd edition, TMH. Parhi, VLSI DSP Systems, John Wiley & Sons. Kaushik Roy, Sharat C. Prasad, (2000), Low Power CMOS VLSI Circuit Design, John Wiley & Sons, Gary K. Yeap, (2002), Practical Low Power Digital VLSI Design, Kluwer Academic Press, . 	

Code	Analog IC Design	Total Lectur Tutorial:	
VE22M203		3 - 1 - 0 = 4	ļ
 To ana amplif To fan To pro 	ective- roduce the basics of MOSFET and its characteristics. alyse the small signal analysis and large signal analysis for single stage fiers, current sources, current mirrors and frequency response of amplifiniliarize the students with the current mirrors and voltage references. ovide strong foundation the CMOS Operational Amplifiers. roduce students with the Characterization of comparator, Two-Stage, O	ers.	ators.
Unit	Contents		Hours
1	MOS Devices and Modelling: The MOS Transistor, I-V characteristics of MOSFET, MOS Switch, MOS Diode, MOS Active Resistor, MOS Large-Signal Model, other Model Parameters, Small-Signal Model of MOSFET, Sub-threshold MOS Model, Integrated circuit Layout, SPICE Models.		10
2	CMOS Amplifiers: Common Source Amplifier configurations, Differential Amplifiers, Cascade Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.		10
3	Current Mirrors and Voltage References: Current Sinks and Sources, Basic Current Mirrors, Cascode Current Mirrors, Wilson Current Mirror, Current and Voltage References.		10
4	CMOS Operational Amplifiers: Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.		8
5	Comparators: Characterization of Comparator, Two-Stage, Open-Lo Other Open-Loop Comparators, Improving the Performance of Open Comparators, Discrete Time Comparators.		7
	Course Outcomes		
	At the end of the course the students should be able to:		
CO 1	Understand² The small and large signal models of MOS transistors.		
CO 2	Analyse ⁴ The operation and behaviour of various analog integrated	circuits.	
CO 3	Explain⁴ The current mirror circuits.		

CO 4	Design⁶ The analog operational transconductance amplifiers.	
CO 5	Create ⁵ A two stage open loop comparator.	
Text Books	 Phillip E. Allen, Douglas R. Holberg, (2013), CMOS Analog Circuit Design, Oxford University Press, 3rd edition. Behzad Razavi, (2017), Analog CMOS Integrated Circuits, McGraw Hill, 2nd Edition. Kenneth Martin, (2013), Analog Integrated Circuit Design, Wiley Publications, 2nd Edition . 	
Reference Books	 Paul. R. Gray, Paul. R. Hurst, Stephen H. Lewis and Meyer. R. G, (2010), Analysis and Design of Analog Integrated Circuits, John Wiley Publications, 5th Edition. Sedra and Smith, (2013), Microelectronic Circuits, Oxford Publications, 6th Edition. 	

Code	Analog IC Design Lab	Practical: 30
VE22M204	List of Experiments	0 - 0 - 2 = 2
1	Characterization of NMOS and PMOS transistors for an	alog figure of merits.
2	Design of single stage amplifiers (CS, CD and CG).	
3	Design of CMOS current mirrors.	
4	Design of active load single stage amplifiers.	
5	Design of CMOS differential amplifier.	
6	Design of CMOS transconductance amplifiers	
7	Design of a two stage CMOS operational amplifier.	
8	Design of CMOS cascade operation amplifier.	
9	Design of basic feedback circuits.	
10	Design of Band-gap reference circuit.	

Code	Embedded Systems Lab-II	Practical:30
VE22M205	List of Experiments	0 - 0 - 4 = 2
1	Design With 8 bit Microcontrollers 8051 pic micro cont Programming: IO Programming, Timers.	rollers- Assembly and C
2	Interrupts. Serial port programming with 8051 PIC mid and C Programming.	crocontrollers. Assembly
3	PWM Generation Motor Control. ADC DAC with 805 Assembly and C programming.	51 PIC Microcontrollers-
4	LCD and RTC interfacing.Sensor Interfacing 8051 Assembly and C Programming.	PIC Microcontrollers-
5	Design with 16-bit Processors: Timers, Interrupts, Seria	l Communication.
6	Design with ARM Processors: I\O Programming, ADC,	DAC, Timers, Interrupts.
7	Simple wired wireless network simulation using NS2 So	oftware.
8	Programming of TCP IP protocol stack.	

Code	Discipline Specific Elective- III	Total Lecture:45 $3 - 0 - 0 = 3$	
VE22M206	CMOS Mixed Signal Circuit Design		
 To desire order set To fam To provide the provided set of t	ctive- oduce the basics of Switched Capacitor circuits gn Phase Locked Loops, Digital to Analog converters, Analog to Digit ampling converters iliarize the students with the phased lock loop (pll): basic pll topology vide strong foundation data converter fundamentals oduce students with the Oversampling Converters	al converters and l	higher
Unit	Contents		Hours
1	Switched Capacitor Circuits: Introduction to Switched Capacitor circuits building blocks, Operation and Analysis, Non-ideal effects in switche circuits, switched capacitor integrators first order filters, Switch share	ed capacitor	10
2	Phased Lock Loop (PLL): Basic PLL topology, Dynamics of simple PLL, Charge pump PLLs-Lock acquisition, Phase/Frequency detector and charge pump, Basic charge pump PLL, Non-ideal effects in PLLs-PFD/CP non-idealities, Jitter in PLLs, Delay locked loops, applications.		10
3	Data Converter Fundamentals: DC and dynamic specifications, Quantization noise, Nyquist rate D/A converters- Decoder based converters, Binary-Scaled converters, Thermometer-code converters, Hybrid converters.		10
4	Nyquist Rate A/D Converters: Successive approximation converters, Flash converter, Two-step A/D converters, Interpolating A/D converters, Folding A/D converters, Pipelined A/D converters, Time-interleaved converters.		8
5	Oversampling Converters: Noise shaping modulators, Decimating fil interpolating filters, Higher order modulators, Delta sigma modulator quantizers, Delta sigma D/A.		7
	Course Outcomes		
	At the end of the course the students should be able to:		
CO 1	Understand ² The design Switched Capacitor Circuits.		
CO 2	Explain² The building blocks of PLL and its operation.		

CO 3	Apply ³ The engineering problems related to D/A Converters.
CO 4	Apply³ The appropriate techniques and tools in development of A/D Converters
CO 5	Analyze ³ The appropriate techniques and Design Over sampling converters.
Text Books	 Behzad Razavi, (2002), Design of Analog CMOS Integrated Circuits, TMH Edition. Philip E. Allen and Douglas R. Holberg, (2010), CMOS Analog Circuit Design, Oxford University Press, International Second Edition/Indian Edition. David A. Johns, Ken Martin, (2013), Analog Integrated Circuit Design, Wiley Student Edition. Behzad Razavi, (2017), Analog CMOS Integrated Circuits, McGraw Hill, 2nd Edn . Kenneth Martin, (2013), Analog Integrated Circuit Design, Wiley Publications, 2nd Edition.
Reference Books	 Rudy Van De Plassche, (2003), CMOS Integrated Analog-to- Digital and Digital-to-Analog converters-Kluwer Academic Publishers. Richard Schreier, (2005), Understanding Delta-Sigma Data converters, Wiley Interscience. Jacob Baker. R, (2009), CMOS Mixed-Signal Circuit Design, Wiley Interscience, . Gustavsson. M, Wikner. J, and Tan Kluwer, (2000), CMOS Data Converters for Communication, Academic Publishers, 1st Edition. R. Jacob Baker, (2008), CMOS Mixed-Signal Circuit Design, Wiley Interscience, IEEE press, 2nd Edition.

Code	Discipline Specific Elective- III	Total Lectur	re:45
VE22M207	Embedded Networking	3 - 0 - 0 = 3	
 To fam microc To proprocess 	oduce students with the embedded communication protocols. iliarize the students with the Application Development using USB and ontrollers. vide strong foundation Application development using Embedded Ether	net for Rabbit	
Unit	Contents		Hours
1	Embedded Communication Protocols: Embedded Networking: Introdu Serial/Parallel Communication – Serial communication protocols -RS RS485 – Synchronous Serial Protocols -Serial Peripheral Interface (SI Integrated Circuits (I2C) – PC Parallel port programming – ISA/PCI I Fire wire.	232 standard – PI) – Inter	10
2	USB and CAN Bus: USB bus – Introduction – Speed Identification on the bus – USB States – USB bus communication: Packets –Data flow types –Enumeration – Descriptors –PIC 18 Microcontroller USB Interface – C Programs –CAN Bus – Introduction – Frames –Bit stuffing –Types of errors – Nominal Bit Timing – PIC microcontroller CAN Interface –A simple application with CAN.		10
3	Ethernet Basics: Elements of a network – Inside Ethernet – Build Hardware options – Cables, Connections and network speed – Design c components –Ethernet Controllers – Using the internet in loc communications – Inside the Internet protocol.	hoices: Selecting	10
4	Exchanging messages using UDP and TCP – Serving web pages with Serving web pages that respond to user Input – Email for Embedded S FTP – Keeping Devices and Network secure.		8
5	Wireless Embedded Networking: Wireless sensor networks – Introduce Applications – Network Topology – Localization –Time Synchroniza efficient MAC protocols –SMAC – Energy efficient and robust routin routing.	tion – Energy	7
	Course Outcomes		
	At the end of the course the students should be able to:		
CO 1	Understand ² The USB and CAN bus for PIC microcontrollers.		

CO 2	Describe ² The embedded communication protocols.	
CO 3	Understand² The engineering development using Embedded Ethernet for Rabbit processors.	
CO 4	Analyze ⁴ The appropriate techniques wireless sensor network communication protocols	
CO 5	Design ⁶ The appropriate techniques exchanging messages using UDP and TCP	
Text Books	 Frank Vahid, Tony Givargis, (2002), Embedded Systems Design: A Unified Hardware/Software Introduction, John & Wiley Publications. Jan Axelson, (1996), Parallel Port Complete: Programming, interfacing and usin PCs parallel printer port, Penram Publications. 	g the
Reference Books	 Dogan Ibrahim, (2008), Advanced PIC microcontroller projects in C: from U RTOS with the PIC18F series, Elsevier. Jan Axelson, (2003), Embedded Ethernet and Internet Complete, Penram publications. Bhaskar Krishnamachari, (2005), Networking Wireless Sensors, Cambridge Pr 	

Code	Discipline Specific Elective- III	Total Lectur	re:45
VE22M208	Digital System Design	3 - 0 - 0 = 3	
To introTo famTo prov	ive- oduce several aspects of digital system concepts like PLAs. oduce the concepts & techniques of testing of digital circuits iliarize the students with the minimization procedures and camp algorit vide strong foundation PLA design, PLA minimization and folding algo duce students with the Fault Diagnosis in Combinational Circuits		
Unit	Contents		Hours
1	Minimization Procedures and CAMP Algorithm: Review on minimises witching functions using tabular methods, k-map, QM algorithm, CAP hase-I: Determination of Adjacencies, DA, CSC, SSMs and EPCs, Calgorithm, Phase-II: Passport checking, Determination of SPC, CAM Determination of solution cube, Cube based operations, determination cubes are wholly within the given switching function or not, Introduce based algorithms.	AMP-I algorithm, CAMP-I P-II algorithm: n of selected	10
2	PLA Design, PLA Minimization and Folding Algorithms : Introduce basic configurations and advantages of PLDs, PLA Introduction, Bloc PLA, size of PLA, PLA design aspects, PLA minimization algorithm PLA folding algorithm(COMPACT algorithm)-Illustration of algorithe examples	ck diagram of (IISc algorithm),	10
3	Design of Large Scale Digital Systems : Algorithmic state Introduction, Derivation of SM Charts, Realization of SM implementation, control unit design, data processor design, ROM de aspects, digital system design approaches using CPLDs, FPGAs and A	Chart, control sign, PAL design	
4	Fault Diagnosis in Combinational Circuits : Faults classes and mod diagnosis and testing, fault detection test, test generation, testing proc minimal complete test set, circuit under test methods- Path sensitizati Boolean difference method, properties of Boolean differences, Kohav faults in PLAs, DFT schemes, built in self-test.	ess, obtaining a on method,	8
5	Fault Diagnosis in Sequential Circuits : Fault detection and location circuits, circuit test approach, initial state identification, Homing experiments, distinguishing experiment, adaptive distinexperiments, machine identification.	eriments	7
	Course Outcomes		

	At the end of the course the students should be able to:	
CO 1	Apply³ The various minimization methods for minimizing the switching functions.	
CO 2	Explain² The minimization and folding algorithms for PLA Design.	
CO 3	Understand² The various aspects in Large Scale Digital Systems design.	
CO 4	Analyze ⁴ The fault modelling concepts to digital circuits and generate the test patterns.	
CO 5	Understand² The concepts of fault diagnosis in Sequential Circuits.	
Text Books	 N. N. Biswas, Logic Design Theory, PHI. Z. Kohavi , (2001), Switching and Finite Automata Theory, 2nd Edition, TMH. P. K Lala, (1990), Digital system Design using PLDs, Prentice Hall. 	
Reference Books	 Charles H. Roth, Fundamentals of Logic Design, 5th Ed., Cengage Learning. Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman, Digital Systems Testing and Testable Design, John Wiley & Sons Inc. 	

Code	Discipline Specific Elective- IV	Total Lectur	re:45
VE22M209	Embedded Linux	3 - 0 - 0 = 3	
To introTo famTo prov	etive- boduce students with the fundamentals of operating systems overview of boduce the concepts & techniques introduction to embedded Linux embed iliarize the students with the Linux fundamentals introduction to Linux vide strong foundation board support package and embedded storage boduce students with the Linux serial driver	edded Linux	S
Unit	Contents		Hours
1	FUNDAMENTALS OF OPERATING SYSTEMS Overview of operating systems – Process and threads – Processes and Programs –Programmer view of processes – OS View of processes – Threads - Scheduling – Non preemptive and preemptive scheduling – Real Time Scheduling – Process Synchronization – Semaphores – Message Passing – Mailboxes – Deadlocks –Synchronization and scheduling in multiprocessor Operating Systems		10
2	LINUX FUNDAMENTALS Introduction to Linux – Basic Linux con concepts – Logging in - Shells -Basic text editing - Advanced shells a – Linux File System –Linux Programming - Processes and threads in process communication – Devices – Linux System calls	and shell scripting	10
3	INTRODUCTION TO EMBEDDED LINUX Embedded Linux Advantages- Embedded Linux Distributions - Architecture - Linux k - User space – Linux start-up sequence - GNU cross platform Tool ch	ernel architecture	10
4	BOARD SUPPORT PACKAGE AND EMBEDDED STORAGE Inc kernel build procedure - The bootloader Interface – Memory Map – I Management – PCI Subsystem – Timers – UART – Power Managem Storage – Flash Map – Memory Technology Device (MTD) –MTD A MTD Driver for NOR Flash – The Flash Mapping drivers – MTD Blo devices – mtdutils package – Embedded File Systems – Optimizing s Turning kernel memor.	nterrupt ent – Embedded Architecture - ock and character	8
5	Linux serial driver – Ethernet driver – I2C subsystem – USB gadgets timer – Kernel Modules – Application porting roadmap - Programmin Operating System Porting Layer – Kernel API Driver - Case studies - Clinux.	ng with threads –	7
	Course Outcomes		

	At the end of the course the students should be able to:	
CO 1	Understand² The fundamentals of operating systems overview of operating systems.	
CO 2	Apply ³ The concepts & techniques of embedded Linux.	
CO 3	Understand² The Linux fundamentals of Linux.	
CO 4	Analyze⁴ The strong foundation board support package and embedded storage.	
CO 5	Create⁶ The Linux serial driver Ethernet driver – I2C subsystem.	
Text Books	 David Barron, (2010), The World of Scripting Languages, Wiley Student Edition. Brent Welch, Ken Jones and Jeff Hobbs., Practical Programming in Tcl and Tk, 4th edition. Larry Wall, Tom Christiansen, John Orwant, Programming Perl, 3rd Edition, Oreilly publications 	
	• Randal L, Schwartz Tom Phoenix, Learning PERL, Oreilly publications.	
Reference Books	Clif Flynt, (2003), A Developer's Guide, Morgan Kaufmann Series.	

Code	Discipline Specific Elective- IV	Total Lectur	e:45
VE22M210	System on Chip Design	3 - 0 - 0 = 3	
Course Obje	ctive-		
 To intr (SOC) To fam To pro To intr 	oduce students with the System Architecture, Components of the system a	and system on cl	nip
Unit	Contents		Hours
1	Introduction to the System Approach: System Architecture, Component system, Hardware & Software, Processor Architectures, Memory and A System level interconnection, An approach for SOC Design, System Ar Complexity.	ddressing.	10
2	Processors: Introduction, Processor Selection for SOC, Basic concepts Architecture, Basic concepts in Processor Micro Architecture, Basic ele Instruction handling. Buffers: minimizing Pipeline Delays, Branches, M Processors, Vector Processors and Vector Instructions extensions, VLIV Superscalar Processors.	ements in Iore Robust	10
3	Memory Design for SOC: Overview of SOC external memory, Internal Memory, Size, Scratchpads and Cache memory, Cache Organization, Cache data, Write Policies, Strategies for line replacement at miss time, Types of Cache, Split – I, and D – Caches, Multilevel Caches, Virtual to real translation, SOC Memory System, Models of Simple Processor – memory interaction.		10
4	Inter Connect Architectures, Bus: Basic Architectures, SOC Standard B Bus Models, Using the Bus model, Effects of Bus transactions and cont SOC Customization: An overview, Customizing Instruction Processor, Reconfiguration Technologies, Mapping design onto Reconfigurable de Instance- Specific design, Customizable Soft Processor, Reconfiguration analysis and trade-off analysis on reconfigurable Parallelism.	ention time.	8
5	Application Studies / Case Studies: SOC Design approach, AES algorit and evaluation, Image compression – JPEG compression	hms, Design	7
	Course Outcomes		
	At the end of the course the students should be able to:		

CO 1	Understand² The abstraction in Hardware, SOC of ARM Processor.	
CO 2	Evaluating ⁵ The system on chip RISC Machine, three and five stage Pipeline.	
CO 3	Explain ³ The Memory Design for SOC.	
CO 4	Understand² The Interconnect Customization and Configuration.	
CO 5	Create ⁶ the SOC design approaches and AES algorithm.	
Text Books	 Michael J. Flynn and Wayne Luk, Computer System Design System-on-Chip, Wiely India Pvt. Ltd. Steve Furber, (2000), ARM System on Chip Architecture, Addison Wesley Professional. 	
Reference Books	 Ricardo Reis, (2004), Design of System on a Chip: Devices and Components – Co-Verification of Hardware and Software for ARM System on Chip Design (Embedded Technology) – Jason Andrews – Newnes, BK and CDROM. Prakash Rashinkar, Peter Paterson and Leena Singh, (2001), System on Chip verification – Methodologies and Techniques, Kluwer Academic Publishers. 	

Code	Discipline Specific Elective- IV	Total Lecture	:45
VE22M211	Semiconductor Memory Design and Testing	3 - 0 - 0 =	= 3
 To fa To pr Fault To str To in Techn 	troduce students with the Random Access Memory Technologies. miliarize the students with the Non-volatile Memories. ovide strong foundation Memory Fault Modeling Testing and Memor Tolerance. udy Semiconductor Memory Reliability and Radiation Effects. troduce students with the Advanced Memory Technologies and High- nologies.		king
Unit	Contents		Hours
1	Random Access Memory Technologies: SRAM – SRAM Cell stru Architecture, MOS SRAM cell and peripheral circuit operati- technologies, SOI technology, Advanced SRAM architectures Application specific SRAMs, DRAM – DRAM technology developm DRAM cell theory and advanced cell structures, BICMOS DRAM DRAM, Advanced DRAM design and architecture, Application spec	on, Bipolar SRAM and technologies, nent, CMOS DRAM, , soft error failure in	10
2	Non-volatile Memories: Masked ROMs, High density ROM, PROM, Bipolar ROM, CMOS PROMS, EPROM, Floating gate EPROM cell, One time programmable EPROM, EEPROM, EEPROM technology and architecture, Non-volatile SRAM, Flash Memories (EPROM or EEPROM), advanced Flash memory architecture.		10
3	Memory Fault Modeling Testing and Memory Design for Testability RAM fault modeling, Electrical testing, Pseudo Random testing, Meg non-volatile memory modeling and testing, IDDQ fault modeling and specific memory testing, RAM fault modeling, BIST techniques for	gabit DRAM Testing, l testing, Application	
4	Semiconductor Memory Reliability and Radiation Effects: General refailure modes and mechanism, Non-volatile memory reliability, relifailure rate prediction, Design for Reliability, Reliability Test S Screening and qualification, Radiation effects, Single Event Radiation Hardening techniques, Radiation Hardening Process Radiation Hardened Memory characteristics, Radiation Hardness As Radiation Dosimetry, Water Level Radiation Testing and Test struct	ability modeling and tructures, Reliability Phenomenon (SEP), and Design Issues, surance and Testing,	8
5	Advanced Memory Technologies and High-density Memory Pa Ferroelectric RAMs (FRAMs), GaAs FRAMs, Analog memories RAMs (MRAMs), Experimental memory devices, Memory Hybrid Memory Stacks and MCMs (3D), Memory MCM testing and reliab cards, High Density Memory Packaging Future Directions.	s, magneto resistive ds and MCMs (2D),	/

	Course Outcomes	
	At the end of the course the students should be able to:	
CO 1	Analyze ⁴ The different types of RAM, ROM designs.	
CO 2	Design⁶ The RAM, ROM architecture and interconnects.	
CO 3	Correlate ⁴ The different memory testing methods and design for testability.	
CO 4	Apply³ The new developments in semiconductor memory design.	
CO 5	Understand ² The various Advanced and High-density Memory Technologies.	
Text Books	 Ashok K. Sharma, (2002), Semiconductor Memories Technology, Wiley. Ashok K. Sharma, Advanced Semiconductor Memories – Architecture, Design Applications, Wiley. Chenming C Hu, Modern Semiconductor Devices for Integrated Circuits, 1st E Prentice Hall. 	
Reference Books	Belty Prince, Semiconductor Memory Design Handbook.	

COURSE CODE	PROJECT BASED LEARNING-I	Total Lecture:30 Practical:30	
PB22M201		0-0-4=2	
Learning Objectives:	 Integrating the knowledge and skills of various multidisciplinary projects Develop the skill of critical thinking and evaluatio To develop 21st century success skills such as c solving, communication, collaboration and creativ students. To enhance deep understanding of academic development in students. Employ the specialized vocabularies and methodo 	n. ritical thinking, problem ity/innovation among the c, personal and social	
	Course Outcome		
At the en	d of the course the students will be able to:		
Course Outcomes:	 Apply³a sound knowledge/skills to select and devery project respectively. Develop⁶ plans and allocate roles with clear lines accountability. Design⁶ solutions to complex problems following approach like problem identification, formulation approach like problem identification, formulation written and in oral forms. Correlate⁴ the knowledge, skills and attitudes of a 	of responsibilityand a systematic and solution. ity at large in	
General Guidelines:	 PBL will be an integral part of UG/PG Programs at diffe Each semester offering PBL will provide a separate Cowill be allotted to it. Faculty will be assigned as mentor to a group of 30 stude Faculty mentor will have 4 hours/week to conduct PBL Student will select a topic of their choice from syllabus respective semester (in-lines with sustainable developme) Student may work as a team maximum 3 or minimum 2 if For MSE, student's performance will be assessed by parfrom other department/school, or from samedepartment/school, or from samedepartment/student is evaluated for 30 marks. 20 marks would be allotted for continuous performance guide/mentor. For ESE, student will need to submit a project report in prisigned by concerned guide/mentor and head of the school comprised of following components: 	urse Code, twocredits dents minimum byHoS. for assigned students. of any course offered in nt goals). members for single topic. nel of three experts either /school based on chosen followed by viva-voce. It assessment by concerned rescribed format,duly	

7. Introduction	
8. Review of literature	
9. Methodology	
10. Result and Discussion	
11. Conclusion and Project Outcomes	
12. References	
• Student will need to submit three copies for	
1. Concerned School	
2.Central Library	
3. Self	
• The integrity of the report should be maintained by student. Any malpractice will not be entertained.	
• Writing Ethics to be followed by student, a limit of 10 % plagiarism is	
permissible. Plagiarism report is to be attached along with the report.	
• Project could be a case study/ analytical work /field work/ experimentalwork	ck/
programming or as per the suitability of the program.	

MO22M301/MO22M302	MOOC-1/ MOOC-2	Total Lecture: Practical:60
	(LTP=0-0-8=4)
Learning Objective:	 Integrating the knowledge and skills of various courses available in online mode. Develop the skills of critical thinking and evaluation. To make students to learn themselves by choosing the course as per there area of interest. 	
	CONTENTS	HOURS
General Guidelines:	 This course creates an excellent opportunity for students to acquire the necessary skill set for research, employability through massive open online courses (MOOCs) where the rare expertise of world famous experts from academics and industry are available. The basket for MOOCs will be a dynamic one, as courses keep on updating with time. In this semester 8 credits will have to be acquired with online courses (MOOCs). Students will have to complete 2 MOOC's of their choice in the third semester. The MOOC-1 and MOOC-2 each carries internal marks of 50, which will be attained after he/she gets the MOOC certificate for which he/she got himself/herself enrolled. For end sem evaluation a Viva-Voce examination shall be conducted and it will carried 50 marks. 	

Guideline for M. Tech Dissertation Phase-I

- Supervisors will we assigned by HOS/ HOD within one week from the start of semester.
- Candidates are required to finalize their dissertation topic in consultation to their assigned supervisor within 15 days after assignment of the supervisor.
- Every candidate has to submit a write-up to the supervisor within one month after finalization of topic in the following format
 - a) Title of dissertation
 - b) Introduction
 - c) Literature review
 - d) Problem Definition
- Dissertation Work Review I : Every Candidate has to give a presentation on write-up, in consultation with his Supervisor to the **Dissertation Work Review Committee** (DWRC) for the approval on the topic.
- Dissertation Work Review Committee will be constituted under the chairmanship of HOS/ HOD, the composition of DWRC is as follows
 - a) HOS/ HOD Chairperson
 - b) Two Senior Faculty members of concerned department
 - c) Supervisor
- Every candidate is required to submit the synopsis to the supervisor within 12 weeks after the commencement of semester in the following format
 - 1. Title of dissertation
 - 2. Abstract
 - 3. Introduction and research significance
 - 4. Literature review
 - 5. Objectives
 - 6. Proposed methodology
 - 7. Expected outcomes
 - 8. References

Guidelines for Synopsis

- 1. All text must be in Times New Roman
- 2. Headings (Times New Roman, Bold, Text size=14)
- 3. Sub Headings (Times New Roman, Bold, Text size=12)
- 4. Running Text (Times New Roman, Text size=12)
- Before the final submission of Dissertation phase-I the candidate has to publish at least one research paper, related to his/her area of research, in some reputed National/ International Journal/ Conference of repute.
- The candidate is required to submit the Dissertation Phase-I with the proof of publications.
- Furthermore, each candidate is required to give a certificate, duly signed by the candidate and counter signed by the supervisor, certifying that the dissertation of the candidate is free of any kind of plagiarism along with the report of plagiarism detection tool.
- The Dissertation phase -I Viva-Voce examination shall be conducted by a board consisting of the

Supervisor and the external examiner appointed by Controller of Examination of University.

•	Distribution of internal marks for all the stages of Dissertation phase –	
	Timely finalization of topic and submission of write-up	(15)
	Power Point Presentation on topic and write-up	(15)
	Submission of Synopsis and Presentation	(20)
	Publication of Research Paper	(50)
	Final Presentation and Submission of Dissertation Phase –I	(50)

<u>Guideline for M. Tech Dissertation Phase – II</u>

- After the successful completion of the Dissertation phase-I, a candidate can initiate the Dissertation phase-II work.
- Every Candidate has to give presentations before the DWRC on the work progress in consultation with his supervisor in fourth and eighth weeks after the commencement of semester.
- A candidate is permitted to submit thesis only after successful completion of all theory and practical courses with the approval of DWRC not earlier than 40 weeks from the date of approval of the dissertation topic.
- The candidate has to submit the draft copy of Dissertation-II to the HOD/ HOS for the approval of DWRC..
- The DWRC will examine the overall progress of the Dissertation Work and decide whether or not the Dissertation is eligible for final submission.
- If DWRC permits then candidate has to give presentation before the DWRC required for final submission of thesis.
- Publication of one research paper in fourth semester is mandatory in any one journal of UGC care/ SCOPUS /SCI.
- After approval from the DWRC, a soft copy of the thesis should be submitted for plagiarism check and the plagiarism report should be submitted to the University and be included in the final thesis. The Thesis will be accepted for submission, if the similarity index is less than 15%.
- If the similarity index has more than the required percentage, the candidate is advised to modify accordingly and re-submit the soft copy of the thesis after 15 days.
- Three copies of the Dissertation-II thesis certified by the supervisor shall be submitted to the HOS/HOD, one copy of the submitted research paper shall be attached to thesis.
- For this, the HOS shall submit a panel of three examiners from among the list of experts in the relevant specialization as submitted by the supervisor concerned and Head of the Department. If the report of the external examiner is unsatisfactory, the candidate shall revise and resubmit the Thesis. If the report of the examiner is unsatisfactory again, the thesis shall be summarily rejected. Subsequent actions for such dissertations may be considered, only on the specific recommendations of the DWRC. No further correspondence in this matter will be entertained, if there is no specific recommendation for resubmission.
- If the report of the examiner is satisfactory, the HOD/ HOS shall coordinate and make arrangements for the conduct of Dissertation Viva- Voce examination. The Dissertation Viva-Voce examination

shall be conducted by a board consisting of the Supervisor, HOD/ HOS and the external examiner who adjudicated the Thesis.

• If he fails to fulfill the requirements as specified in previous point he will reappear for the VivaVoce examination only after three months. In the reappeared examination also, if he fails to fulfill the requirements, he will not be eligible for the award of the degree, unless he is asked to revise and resubmit his dissertation work by the board within a specified time period (within four years from the date of commencement of his first year first semester).

•	Distribution of internal marks for all the stages of Dissertation	n of internal marks for all the stages of Dissertation Phase –II	
	First Power Point Presentation	(25)	
	Second Power Point Presentation	(25)	
	Publication of Research Paper	(50)	
	Final Presentation and Submission of Dissertation Phase –II	(100)	