Master of Technology (Wireless Sensor Network) 2 Years Degree Program

Program Educational Objectives (PEOs)

- To prepare the students with good understanding of the respective subjects with design, analytical and problem solving skills.
- To train the students with knowledge of latest design trends.
- To inculcate in students the sense of ethics, morality, professionalism, creativity, leadership, independent thinking, self confidence, good communication skills and prepare them to become successful engineers who can work worldwide in industries and research & development laboratories.
- To introduce the research world to them so that they feel motivated for higher studies and innovation not only in their own domain but multidisciplinary domain.
- To recognize social needs and contribute effectively through self learning.

Program Outcome (POs):-

- The graduates will be able to apply the concepts of Engineering mathematics through Laplace, z-transform, linear algebra, probability and statistics, differential equations etc. and basic knowledge of engineering physics and chemistry.
- The graduates will be able to understand, interpret the problem, design and perform the experiments to meet the desired solution of the problem within the context of electronics and communication engineering.
- The graduates will have a good understanding of professional and ethical responsibility.
- The graduates will be able to express themselves effectively through written and oral communication.
- The graduates will have a good understanding and knowledge in applying the engineering solutions to society.
- The graduates will have a good understanding for the need of life long learning and will be able to work in teams.

- The graduates will show good proficiency in applying the techniques and knowledge of modern engineering skills in tackling contemporary technological challenges.
- The graduates will have good background for admission to post graduate programs (in same domain), management degree programs and also research programs in various organizations of national and international repute.
- The graduates will be able to participate and succeed in competitive examinations.
- Adapt transform in industry by understanding the need of independent and lifelong learning

Sanjeev Agrawal Global Educational University (SAGE), Bhopal

School Of Engineering & Technology

						First Y	Zear – Se	mester F	irst							
Course Code	Course Title	Contact Hours per Week		Credits	ET Dui 0	Theory Practical										
		L	Т	P		E ati	MSE	ASG	TA	ATTD	ESE	Total	CE	ESE	Total	Grand Total
MA20M101	Advanced Mathematics	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
WS20M101	Wireless & Mobile Communication	3	1		4	3	30	05	05	10	50	100	-	-	-	100
WS20M102	Wireless Sensor Network	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
	DSE – I	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – II	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
WS20M103	Wireless & Mobile Communication	-	-	4	2	/	-	-	-	-	-	-	20	30	50	50
WS20M104	Wireless Sensor Network	-	-	4	2	2	-	-	-	-	-	-	20	30	50	50
PB20M101	Project based learning	-	-	4	2	2	-		1		-	-	50	50	100	100
WS20M105	Embedded Sensor Networks	-	-	4	2	2	-				-	-	20	30	50	50
-	-	Tota	l l	1	26	-	-				<u> </u>	500			250	750

Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolution

Wireless Sensor Network

						First Y	ear – Ser	nester Se	cond							
Course Code	Course Title	Contact Hours per Week		Credits	ET Dura (Ho	Theory Practical										
		L	Т	Р		E Ition	MSE	ASG	TA	ATTD	ESE	Total	CE	ESE	Total	Grand Total
WS20M201	Fundamentals of Remote Sensing & Image Interpretation	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
WS20M202	Remote Sensing & GIS	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
WS20M203	Advanced Digital Signal Processing	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
	DSE – III	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – IV	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
GE20B201	Generic Electives I	2	-	-	2	2	30	05	05	10	50	100	-	-	-	100
WS20M204	Advanced Digital Signal Processing	-	-	4	2	3	-	-	-	-	-	-	20	30	50	50
PB20M201	Project based learning	-	-	4	2	2	-				-	-	50	50	100	100
WS20M205	Programming Wireless Sensor Networks	-	-	4	2	-	-				-	-	20	30	50	50
-	-	Tota	ıl		26	-	-					600			200	800

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolution

						V	Vireless S	ensor Net	work								
	Second Year – Semester Third																
Course Code	Course Title	Con Hou Wee	Contact Hours per Week		Credits	Credits		Theory							Practical		
		L	Т	Р		TE ration ours)	MSE	ASG	TA	ATTD	ESE	Total	CE	ESE	Total	Grand Total	
PB20M301	MOOC -1	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100	
PB20M302	MOOC - 2	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100	
WS20M301	Dissertation Phase-I	-	-	24	12	2		-			-	-	200	200	400	400	
-	-	Tota	ıl		20		-					-	-		-	600	

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolution

	Wireless Sensor Network															
	Second Year – Semester Fourth															
Course Code	Course Title	Con Hou Wee	tact rs pei k	r	Credits	(H	Theory	ory Practical								
		L	Т	Р		ETE ration lours)	MSE	ASG	TA	ATTD	ESE	Total	СЕ	ESE	Total	Grand Total
WS20M401	Dissertation Phase-II	-	-	32	16	2		-			-	-	250	250	500	500
-	-	Tota	ıl		16		-					-	-		-	500

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolution

Master of Technology (Wireless Sensor Network)

2 Years Degree Program

Curriculum Components

Components	Credits
Program Core (11Courses)	34
Program Electives (Discipline Specific Electives) (04Courses)	12
Generic Electives (01 Courses)	02
Project Based Learning (PBL)/MOOCs (04 courses)	12
Project (02 Courses)	28
Total	88

Distribution of credits across all components

SEM No.	Programme Core	Discipline Specific Electives (DSE)	Generic Electives (GE)	Project Based Learning (PBL)/ MOOCs	Project	Total Credit
I.	18	6	-	2	-	26
II.	16	6	2	2	-	26
III.	-	-	-	8	12	20
IV.	-	-	-	-	16	16
Total	34	12	02	12	28	88

M Tech (Wireless Network Sensor) List of Program (Discipline Specific) Electives (DSE)

	First Year – Semester One (DSE-I)									
Course Code	Course Title									
WS20M106	Satellite Communication									
WS20M107	Internet of Things									
WS20M108	Voice & Data Network									
	First Year – Semester One (DSE-II)									
Course Code	Course Title									
WS20M109	Embedded System Design									
WS20M110	Remote Sensing & GIS									
WS20M111	Navigation Guidance & Control									
	First Year – Semester Second (DSE-III)									
Course Code	Course Title									
WS20M206	Application of Remote Sensing in Geosciences									
WS20M207	Remote Sensing & GIS for Agriculture & Forestry									
WS20M208	Advanced Remote Sensing Techniques									
	First Year – Semester Second(DSE-IV)									
Course Code	Course Title									
WS20M209	High Performance Networks/ Pattern Recognition									
WS20M210	Pattern Recognition & Machine Learning									
WS20M211	Advanced Microprocessor & Micro Controller									

Generic Electives

List of Generic Electives

S.NO	Code	Nomenclature of the	Offering School
		course	
1.	GE20M01	Java Programming	School of Engineering &
			Technology
2.	GE20M02	Python Programming	School of Advance Computing
3.	GE20M03	Matlab Programming	School of Engineering &
			Technology
4.	GE20M04	C++ Programming	School of Engineering &
			Technology
5.	GE20M05	R Programming	School of Advance Computing
6.	GE20M06	CAD/CAM Software	School of Engineering &
			Technology

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

Syllabus

For

M.Tech

WIRELESS SENSOR NETWORK

I Semester

School of Engineering & Technology

Code		Advanced Mathematics	Total Lect Tutoria	ture:45 al: 15
MA20M1	01		3	-1-0=4
Course Obje	ectives	design to develop cohorent understanding of various s	roos of As	hunnad
Mathematic	cs. Prin	iciple course objectives are:	areas of Ac	ivanceu
•	To in	troduce students to the theoretical distributions, sam	pling distri	butions
	and t	heir applications		
•	To in	troduce the students to the solution of partial differentia	al equation	
•	Dem	onstrate an understanding to the theory and application	s of linear a	algebra
•	To ex	stend the concept of the computer algorithms related	to dimens	ionality
	redu	ction and feature extraction.		
• To in	ntrodu(ce the concepts of Stochastic process and Markov proces	ss transitio	n.
UNIT		Contents		Hours
1	Prob Binor elem relat	ability, compound probability and discrete random mial, Normal and Poisson's distributions, Sampling dis entary concept of estimation and theory of hypothesis, ions.	variable. tribution, recurred	10
2	Solut varia Paral FT, D	tion of Partial Differential Equation (PDE) by sepa ble method, numerical solution of PDE (Laplace, bola) using finite difference methods, Elementary prop FT, WFT, Wavelet transform, Haas transform.	ration of Poisson's, perties of	9
3	Finite oper space Trape Taylo meth	e differences: forward, backward and central of ators, polynomial interpolation: equally spaced and ed data; Numerical Differentiation, Numerical interpolation and Simpson 1/3 rd and 3/8 th rules; Initial value por series method, Euler and modified Euler methods, Rur	difference unequally regration- roblems - nge- Kutta	9
4	Solut facto squa Orthe least Princ	tion of Linear systems– Gaussian elimination metorization method, Cholesky's factorization method. Line res problems - Normal equations, QR method (or Gram o- normalization), Singular value decomposition (SVD) -squares problems, numerical rank determination sipal Component Analysis.	thod, LU ear least- n Schmidt for linear via SVD,	9
5	Stor prol of E	chastic process, Markov process transition probability bability matrix, just and higher order Markov process, Ap Eigen value problems in Markov Process, Markov chain	transition oplication Queuing	8

	system, transient and steady state, traffic intensity, distribution queuing system, concepts of queuing models (M/M/1: Infinity/ Infinity/ FC FS), (M/M/1: N/ Infinity/ FC FS), (M/M/S: Infinity/ Infinity/ FC FS).						
	Course Outcomes						
At the end	of the course the students should be able to:						
CO1	Be able to understand probability, sampling distribution and discrete random variable.						
CO2	Understand the terms and their applications of Solution of Partial Differential Equations						
CO3	Understand the numerical methods and their use in obtaining approximate solutions to otherwise intractable linear/non-linear system of equations and differential equations.						
CO4	Analyse the fundamental use of matrices in the computer algorithms related to dimensionality reduction and feature extraction.						
CO5	Implement Stochastic process, Markov process transition probability transition probability matrix and Markov process.						
Text Book	 S C <i>Gupta</i> & V K <i>Kapoor</i>, 2014, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, Delhi. Gilbert Jimmie, 2010, Gilbert, Linear Algebra And Matrix Theory, Elsevier India. 						
	• Dr B S Grewal, 2014, Numerical Methods in Engineering & Science: With Programs in C, C++ & MATLAB, 10 th Edition, Khanna Publishers.						
Reference Books	 Rohatgi, V.K., and Saleh, A.K.Md. Ehsanes, 2009, An introduction to probability and statistics. Second Edition, Wiley India. L. N. Trefethen and David Bau, 1997, Numerical Linear Algebra, SIAM, Philadelphia. 						

Cod	le	Wireless & Mobile Communication	Total Lectur Tutorial:	re:45 15
RS20N	/1101		3 – 1 – 0 :	= 4
Course • To con • To gro • To men • To sys • To Unit	Objec provide nmunica appreci wth. explain thodolo enable tems, an enable	tives- an overview of Wireless Communication networks area and its a ation engineering. ate the contribution of Wireless Communication networks to over the various terminology, principles, devices, schemes, concepts, a gies used in Wireless Communication Networks. students to compare and contrast multiple division techniques, mo and existing wireless networks. students to code division multiple access Contents	pplications in all technological algorithms and di bile communicat	fferent ion Hours
1	Cellula cell spl interfer Freque GSM a Encryp High sj (GPRS	ar Communication Fundamentals, Cellular system design, Fr litting, handover concepts, Co channel and adjacent channel rence reduction techniques and methods to improve cell cov- ncy management and channelassignment.GSM architecture architecture details, GSM subsystems, GSM Logical Channe otion in GSM, Mobility Management, Call Flows in GSM.2. peed Circuit Switched Data (HSCSD), General Packet Radio),2.75 G Standards: EDGE	equency reuse, interference, erage, and interfaces, ls, Data 5 G Standards: o Service	10
2	Spectra techno based o applica calcula	al efficiency analysis based on calculations for Multiple accellogies, TDMA, FDMA and CDMA, Comparison of these tec on their signal separation techniques, advantages, disadvanta- ation areas, Wireless network planning (Link budget and pow tions)	ess chnologies ges and ver spectrum	10
3	Mobile Model Practic Model Scale F Measu Time I fading.	e Radio Propagation: Large Scale Path Loss, Free Space Prop Reflection, Ground Reflection (Two-Ray) Model, Diffracti al Link Budget Design using Path Loss Models, Outdoor Pros s, Indoor Propagation Models, Signal Penetration into Build Fading and Multipath Propagation, Impulse Response Model rements, Parameters of Multipath channels, Types of Small Delay Spread; Flat, Frequency sElective, Doppler Spread; Fa	pagation on, Scattering, opagation ings. Small , Multipath Scale Fading: st and Slow	10
4	Equaliz adaptiv diversi	zation, Diversity, Equalizers in a communications receiver, A re equalization, diversity techniques, space, polarization, free ty, Interleaving.	Algorithms for quency	8

5 Co Arc and CE CE CE	de Division Multiple Access, Introduction to CDMA technology, IS 95 system chitecture, Air Interface, Physical and logical channels of IS 95, Forward Link d Reverse link operation, Physical and Logical channels of IS 95 CDMA, IS 95 DMA Call Processing, soft Handoff, Evolution of IS 95 (CDMA One) to DMA 2000, CDMA 2000 layering structure and channels. Higher Generation llular Standards: 3G Standards: evolved EDGE, enhancements in 4G standard, epitecture and representative protocols, call flow for LTE, Vol TE, UMTS	7
int	roduction to 5G.	
	Course Outcomes	
At the end	of the course the students should be able to:	
CO 1	Understand fundamentals of wireless communications.	
CO 2	Analyze security, energy efficiency, mobility, scalability, and their unique characteristics in wireless networks.	
CO 3	Demonstrate basic skills for cellular networks design.	
CO 4	Apply knowledge of TCP/IP extensions for mobile and wireless networking.	
CO 5	Apply knowledge of Code Division Multiple Access	
Text	• V.K.Garg, J.E.Wilkes, "Principle and Application of GSM", Pearson Educa	ation, 5 th
Books	 edition, 2008. V.K.Garg, "IS-95 CDMA & CDMA 2000", Pearson Education, 4th edition, 2 	2009
Reference	T.S.Rappaport, "Wireless Communications Principles and Practice", 2n Willi	iam
Books	 C.Y.Lee, "Mobile Cellular Telecommunications Analog and Digital Systems" edition, TMH, 1995.d edition, PHI,2002 	", 2 nd

Code		Wireless Sensor Network	Total Lecture:4 Tutorial: 15	
RS20M102			3 - 1 - 0 = 4	
 Course Objectives- To Understand the basic WSN technology and supporting protocols, with emphasis placed on standardization basic sensor systems and provide a survey of sensor technology Understand the medium access control protocols and address physical layer issues Learn key routing protocols for sensor networks and main design issues Learn transport layer protocols for sensor networks, and design requirements Understand the Sensor management ,sensor network middleware, operating systems. 		s.		
Unit		Contents		Hours
1	Introd and S Challe	uction and overview of Wireless Sensor Networks (WSN), or cientific Applications of WSN, Category of Applications of enges for WSN, Enabling Technologies for WSN	Commercial WSN,	10
2	Single Senso Senso and fi WSN	e node Architecture: Hardware Components, Energy Consur r nodes, Operating Systems and Execution Environments, E r Nodes, Network Architecture: WSN Scenarios, Optimizati gures of Merits, Design principles for WSNs, Service Interfa s, Gateway Concepts.	nption of xamples of on Goals aces for	10
3	Physic Physic Protoc Protoc Energ Trans of Tra	cal Layer: Wireless Channel and Communication Fundament cal Layer & Transceiver Design Considerations in WSN, Macols: Fundamentals, MAC Protocols for WSNs, IEEE802.15 col, Routing Protocols: Gossip and agent based unicast prot y Efficient Unicast, Broadcast and Multicast, Geographic Report Control Protocols: Traditional Protocols, Design Issues insport Protocols, Performance of Transport Control Protocol	tals, AC .4 MAC ocols, outing, , Examples ols.	10
4	Senso Routi Query Indice Data.	r Tasking and Control: Information-Based Sensor Tasking, ng Information Aggregation, Sensor Network Databases: Ch Interfaces, In-Network Aggregation, Data Centric Storage, es and Range queries, Distributed Hierarchical Aggregation,	Joint allenges, Data Temporal	8
5	Opera Exam Traffi WSN	ting Systems for Sensor Networks: Introduction, Design Iss ples of Operating Systems, Node Level Simulators, Perform c Management Issues: WSN Design Issues, Performance Me s, Emerging Applications and Future Research Directions.	ues, ance and odelling of	7
Course Outcomes				
At the en	At the end of the course the students should be able to:			

CO 1	Introduction to wireless networks, architectures and technologies.	
CO 2	Wireless sensor network platforms: Hardware and Software.	
CO 3	Communication architecture and protocols for WSN (MAC, Link, Routing)	
CO 4	Energy management.	
CO 5	Sensor data acquisition, processing and handling.	
Text Books	 Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks: Technology, Protocols, and Applications", John wiley & Sons. Holger Karl, Andreas Willig, "Protocols and architectures for wireless sensor networks", John wiley & Sons. 	
Reference Books	 Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks; An Information Processing Approach", Elsevier. C. S. Raghavendra, Krishna M. Shivalingam, Taieb Znati, "Wireless sensor networks", Springer Verlag. H. Edgar, Jr. Callaway, "Wireless Sensor networks, Architectures and Protocols", CRC Press. 	

Code	Wireless & Mobile Communication Lab-1	Total Lecture:30
RS20M103	List of Experiments	0-0-2=2
1	Baseband Communication.	
2	Adaptive Linear Equalizer.	
3	Code Division Multiple Access (CDMA) – Multipath.	
4	Code Division Multiple Access (CDMA) – Multiuser.	
5	Global System for Mobile Communication (GSM) (Using V Wireless.	WiCOMM-T –
6	Digital Communication Training system – SDR Platform).	
7	Spread Spectrum – DSSS Modulation & Demodulation.	
8	Free Space Propagation – Path Loss Model.	
9	Link Budget Equation for Satellite Communication.	
10	Carrier to Noise Ratio in Satellite Communication.	
11	Outdoor Propagation – Okumura Model.	
12	Outdoor Propagation – Hata Model.	
Note: Minimum of 10 experiments to be conducted.		

Code	Wireless Sensor Network Lab-II	Practical:30
RS20M104	List of Experiments	0-0-2=2
1	Applications and its simulation.	
2	Network Simulator installation of wireless sensor network.	
3	Write TCL script for transmission between mobile nodes.	
4	Write TCL script for sensor nodes with different parameter	S.
5	Generate tcl script for udp and CBR traffic in WSN nodes.	
6	Generate tcl script for TCP and CBR traffic in WSN nodes	
7	Implementation of routing protocol in NS2 for AODV prot	ocol.
8	Implementation of routing protocol in NS2 for DSR protoc	ol.
9	Implementation of routing protocol in NS2 for TORA proto	ocol.
10	Study other wireless sensor network simulators (Mannasim	. Contiki.).

Code	Embedded Sensor Networks	Practical:30
RS20M105	List of Experiments	0-0-2=2
1	C++ is slow.	
2	C++ produces bloated machine code.	
3	Objects are large.	
4	Virtual functions are slow.	
5	C++ isn't ROMable.	
6	Class libraries make large binaries.	
7	Abstraction leads to inefficiency.	

Code		Discipline Specific Elective- I	Total Lectu	re:45
RS20	M106	Satellite Communication	3-0-	- 0 = 3
Course	e Ohie	 ectives-		
 To enable the student to become familiar with satellites and satellite services. Study of satellite orbits and launching Study of earth segment and space segment components Study of satellite access by various users. To understand students to tracking of satellites. 				
Unit		Contents		Hours
1	Intro	luction: Satellite communication, Brief History.		10
2	Orbits of satellite: Low, medium and Geo synchronous mam characteristics, Angle period, Returningperiod, Angle of Evaluation, Propagation Delay, Orbital Spacing.		10	
3	Satellite Links: Delay transponders, Earth Stations, Antennas and Earth coverage, Altitude andeclipses		9	
4	Earth space propagation effects: Frequency window, Free space loss, Atmospheric absorption, Rainfall Attenuation, Ionospheric scintillation, Telemetry, Tracking and command of satellites.		8	
5	Detection: QPSK offset QPSK and MSK. Coherent and non-coherent detection, Error rateperformance.		8	
		Course Outcomes		
At the	end of	the course the students should be able to:		
CO	1 I	Define orbital mechanics and launch methodologies		
CO	2 I	Describe satellite subsystems		
CO	3 I	Design link power budget for satellites		
CO	CO 4 Compare competitive satellite services			
CO	CO 5 Explain satellite access techniques			
CO	6 I	OTH and compression standards		
Tex Bool	 Yext J. Martin: Communication Satellite System, PH Englewood. 2. D.C.Aggarwal: Satellite Communication, Khanna Publishers 			
Refere Bool	 ence Tri Ha Digital Satellite Communication Tata McGraw Hill. Harry and Yam Trees: Satellite Communication, IEEE Proceedings, 			

Code		Discipline Specific Elective- I	Total Lecture	
RS20M107		Internet of Things	3 - 0 - 0 =	3
Course	Objec	tives-		
 Describe what IoT is and how it works today. Recognise the factors that contributed to the emergence of IoT. Design and program IoT devices. Use real IoT protocols for communication. Secure the elements of an IoT devices. 				
Unit		Contents		Hours
	Review of computer communication concepts (OSI layers, components, packet communication, Networks, TCP-IP, subnetting,IPV4 addressing and challenges). IPV6 addressing. IoT architecture reference layer.		10	
2	Characteristics IoT sensor nodes, Edge computer, cloud and peripheral cloud, single board computers, open source hardwares, Examples of IoT infrastructure		10	
3	3 MQTT, UDP, MQTT brokers, publish subscribe modes, HTTP, COAP,XMPP and gateway protocols		9	
4 I	To TCommunicationPattern,IoTprotocolArchitecture, Selection of Wireless arechnologies (6LoWPAN, Zigbee, WIFI, BT, BLE,SIG,NFC, LORA,Lifi,Widi)		8	
5	5 Evolution of Cloud Computation, Commercial clouds and their features, open source IoT platforms, cloud dashboards, Introduction to big data analytics and Hadoop		8	
		Course Outcomes		
At the en	nd of t	he course the students should be able to:		
CO 1	CO 1 Having an ability to apply mathematics and science in engineering applications		ıs	
CO 2 Having an ability to design a component or a product applying all t standards and with realistic constraints, including public health, safe society and environment		plying all the health, safety,	relevant culture,	
CO 3	CO 3 Having an ability to design and conduct experiments, as well as to analy interpret data, and synthesis of information		yse and	
CO 4	CO 4 Having an ability to use techniques, skills, resources and modern engineering ar tools necessary for engineering practice		g and IT	
CO 5 Having adaptive thinking and adaptability in relation to environmental contex sustainable development		text and		

Text	Alessandro Bassi, Martin Bauer, Martin Fiedler, Thorsten Kramp, Rob van Kranenbu	rg,
Books	Sebastian Lange, Stefan Meissner, "Enabling things to talk – Designing IoT solution	with the
	IoT Architecture Reference Model", Springer Open, 2016	
Reference	LuYan, Yan Zhang, Laurence T. Yang, Huansheng Ning, The Internet of Things:	
Books	From RFID to the Next-Generation Pervasive Network, Aurbach publications,	
	March,2008	

Code		Discipline Specific Elective- I	Total Lecture:45	
RS20M	108	Voice & Data Network	3 - 0 -	-0 = 3
 Course Objectives- Understand voice and data concepts and applications and how they integrate with broadband business. Understand the technologies specific to voice and data transportation. Have a reference tool on voice and data business functions and technologies. Use this course to help prepare for SCTE's Broadband Premises Installer and Broadband Telecom Center Specialist certifications. Beceive an industry-recognized NCTL certificate of graduation 			dband	
Unit		Contents		Hours
1 L re	LabVIEV ead data	W Graphical Programming, NI DAQmx, Data acquisition a into MATLAB and Simulink and write data into DAQ de	Toolbox to evice.	10
2 A	Acquire	and generate analog signals.		10
3 A	Acquire and generate non-clocked digital data.		10	
4 0	Generate Pulse Width Modulated signal		8	
5 A	Acquire and generate audio signals		7	
	Course Outcomes			
At the en	nd of the	course the students should be able to:		
CO 1	Ability develoj	to apply the knowledge of science, mathematics, and en ping problem solving attitude	gineering princ	iples for
CO 2	Ability System	to identify, formulate and solve engineering problems	in the broad an	eas like
CO 3	Ability Verific	to understand and use different software tools for ation in the domain of communication and networking	Design, Analy	sis and
CO 4	Ability prograi	to design and conduct experiments, analyze and mming skills for development of simulation experiments.	interpret data,	imbibe
CO 5	Ability integrit	to function as a member of a multidisciplinary team y and social responsibility.	with sense of	f ethics,
Text Books	• Be • Da	ehzadAhzani "Data Acquisition using LabVIEW" Packt Publish ata Acquisition Toolbox – UseGuide, MathWorks, 2016	ing, 2017	

Referen	• Lab VIEW: A Developer's Guide to Real World Integration edited by Ian Fair
ce	weather, Anne Brumfield, 2011, CRC Press
Books	

Code		Discipline Specific Elective-II Total Lecture		re:45
RS20M109		Embedded System Design	3	-0-1=4
Course • To • To • To • To • To	e Objec introdu Introdu impart introdu introdu	tives ce the Building Blocks of Embedded System ce Bus Communication in processors, Input/output interfacing. knowledge in various processor scheduling algorithms. ce Basics of Real time operating system and example tutorials to ce one real time operating system tool.	discuss on	
Unit		Contents		Hours
1	Introdu System system low-le ^v control Systen	action to embedded system : Background and History of Em h, Defination and Classification, Programming language for : desirable characterstic of programming language for embe vel versus high-level language, main language implementati l, typing. Major programming languages for embedded syste h on a Chip (SOC) and the use of VLSI designed circuits	bedded embedded dded system, on issue : ems.Embedded	10
2	Proces selection Alloca system V Synon device –Parall and Co	sor and Memory Organization : Structural units in processor on for an embedded system, Memory devices, Memory selec- tion for memory to program segments and blocks and memor , DMA, Interfacing Processor. I/O Devices-Device I/O type chronous – Iso-synchronous and Asynchronous Communica s – Examples of internal serial-communication devices –UA lel Port Devices –Sophisticated interfacing features in Devic punting Device	r, Processor ction, ory map of a s and examples tion from serial RT and HDLC re/ports –Timer	10
3	Microo Microo 8051 F Types	controller : Introduction to microcontrollers, Evolution, Microcontrollers, MCS-51 Family Overview, Important Feature, A Fin functions, Architecture, Addressing Modes, Instruction se	roprocessors vs Architecture. et, Instruction	10
4	Progra Overfle Serial j comm	mming : Assembly Programming . Timer Registers, Timer r ow flags, clocking sources, timer counter interrupts, baud ra port register, mode of operation, initialization, accessing, mu unications, serial port baud rate	nodes, te generation. ltiprocessor	8
5	Interru Extern Microc transm	pts: Interrupt Organisation, Processing interrupts, Serial por al interrupts, interrupt service routines. Microcontroller spec controller design, testing, timing subroutines, look up tables ission	t interrupts, eification, , serial data	7

	Course Outcomes
At the end of	of the course the students should be able to:
CO 1	Acquire a basic knowledge about fundamentals of microcontrollers.
CO 2	Acquire a basic knowledge about programming and system control to perform a specific task.
CO 3	Acquire knowledge about devices and buses used in embedded networking.
CO 4	Develop programming skills in embedded systems for various applications.
CO 5	Acquire knowledge about basic concepts of circuit emulators.
Text Books	• JohnB.Peatman, "Design with PIC Microcontroller",Pearson Pub 2. Predko, "programming and customizing the 8051 microcontroller", TMH.
Reference Books	 Mazidi, "The 8051 microcontroller and embedded system", Pearson Pub. Deshukh, "Microcontroller", TMH.

Code		Discipline Specific Elective-II	Total Lectu	re:45
RS20M110		Remote Sensing & GIS	3 - 0 -	0 = 3
Course	e Objec	tives-		
 To provide exposure to students in gaining knowledge on concepts and applications leading to modeling of earth resources management using Remote Sensing . To acquire skills in storing, managing digital data for planning and development. To acquire skills in advance techniques such as hyper spectral, thermal and LiDAR scanning f mapping, modeling and monitoring. Introduce to students to Thematic interpretation Introduce to students to Integration of Remote Sensing and GIS 				
Unit		Contents		Hours
1	Aerial photography and photogrammetry: basic principles, photographic systems, visual interpretation and mapping. Ground truth verification radiometer and its application.		10	
	Basic of remote windov imagin Charac various	concepts of remote sensing: Idealized remote sensing system sensing, electromagnetic spectrum, black body concept, atm ws, geometry of scanners, CCD arrays and platforms, history g characteristics of space platform like LANDSAT, SPOT, i teristics of sensors like MSS, TM, LISS I and LISS II. Ou s sensors.	. Physics of nospheric v of space IRS, etc. htputs from	
2	Classif Extrac interpr verific	ication of digital data and information:Supervised, unsupervised, unsupervised, unsupervised, unsupervised, unsupervised, procedure for different applications and terrain evaluation etation, transfer of interpreted thematic information to base pation.	ised. on. Thematic nap. Ground	10
	Agricu use/lar	lture, Oceanography, Fisheries, Water resources, Town plan d cover mapping.	ning and land	
3	Geogra themat decisio	aphic Information System Introduction: Map and use of map ic and multiple theme maps, Development of GIS as an intro on making system	s through time, oduction and	10
	An Ov discipl	verview of GIS: Definition, Objectives and basic concept ines and technologies.	s, Contributing	
4	Digital Representation of Geographic Data: Technical issues related to digital representation of geographic data, Data quality and standards, Assessment of data quality, Managing spatial errors, Data standards and GIS development.		8	

	Components of GIS: Computer hardware, peripherals and software		
5	5 Integration of Remote Sensing and GIS: Extracting metric information from Remotely Sensed images, Extracting thematic information from Remotely Sensed images, Integration of information from remote sensing in GIS . GIS application areas.		
	Course Outcomes		
At the e	nd of the course the students should be able to:		
CO 1	CO 1 Analyse the principles and components of photogrammetry and remote sensing.		
CO 2	Describe the process of data acquisition of satellite images and their characteristics		
CO 3	CO 3 Compute an image visually and digitally with digital image processing techniques.		
CO 4	CO 4 Explain the concepts and fundamentals of GIS.		
CO 5 Compute knowledge of remote sensing and GIS in different civil engineering applicatio		tions.	
Text Book	 Paul R Wolf, Elements of photogrammetry Mc Graw-Hill Lille sand & Kiefer, Remote sensing and image interpretation, John Wile 	 Paul R Wolf, Elements of photogrammetry Mc Graw-Hill Lille sand & Kiefer, Remote sensing and image interpretation. John Wiley and 	
Door	 Sons Floyd F. Sabins Remote sensing principles and interpretation WH Free Co. 		
Referen Book	 eference John R Jensen, Introductory digital image processing Prentice Hall George Joseph, Fundamentals of Remote SensingUniversities Press-Technic L R A Narayan Remote Sensing and its Applications Universities Press-Science/Reference M. Anji Reddy, Remote Sensing and Geographic information systems – BS Publishers 		

Code		Discipline Specific Elective-II	Total Lecture:45	
RS20M111		Navigation Guidance & Control	3 - 0 - 0 = 3	
 Course Objectives- This course covers the basics of Navigation, Guidance, and Control used in aerospace systems Basically all the above three topics use basic control theory for their mathematical framework This course covers all three topics under one course and is meant for undergraduate aerospace engineering students. Understand to students to back stepping algorithm. The course can also be used for first year graduate students in aerospace engineering to expose them to basics of control theory applied to aerospace engineering. Understand to students to flight control systems. 				
Unit		Contents		Hours
1	Introd backg	uction to navigation, Guidance and control - definition, Historound	orical	10
2	Operating principles and design of guidance laws, Homing guidance laws- short range, Medium range and BVR missiles, Launch Vehicle- Introduction, Mission requirements, Implicit guidance schemes, Explicit guidance, Q guidance schemes			10
3	Need for automatic flight control systems, Stability augmentation systems, control augmentation systems, Gain scheduling concepts			10
4	Displacement Autopilot-Pitch Orientation Control system, Acceleration Control System, Glide Slope Coupler and Automatic Flare Control and Flight path stabilization, Longitudinal control law design using back stepping algorithm		8	
5	Damping of the Dutch Roll, Methods of Obtaining Coordination, Yaw Orientation Control system, turn compensation, Automatic lateral Beam Guidance. Introduction to Fly-by-wire flight control systems, Lateral control law design using back stepping algorithm		7	
		Course Outcomes		
At the e	end of	the course the students should be able to:		
СО	CO 1 Knowledge: In-depth knowledge of design and analysis of state estimators for navigation systems. Focus is placed on inertial navigation systems and aidin techniques.			tors for 1 aiding
CO	CO 2 Guidance and navigation systems for ship, aircraft and unmanned ve		vehicles.	

	Knowledge of inertial sensors and global navigation systems.
CO 3	Skills: Be able to model, simulate and implement navigation systems for unmanned underwater vehicles and aerial vehicles
CO 4	ships, aircraft and satellites. Understand how Kalman filters and nonlinear observers are used to estimate position, velocity and attitude of moving objects.
CO 5	General competence: Skills in applying this knowledge and proficiency in new areas and complete advanced tasks and projects.
Text Books	 P.T. Kabamba and A.R. Girard, Fundamentals of Aerospace Navigation and Guidance, Cambridge Aerospace Series, 2014. John H Blakelock, 'Automatic control of Aircraft & Missiles', Wile -Inter Science Publication, 2nd edition, May 1990.
Reference Books	 R.B. Underdown & Tony Palmer, 'Navigation', Black Well Publishing; 2001. Merrilh I. Skolnik, 'Introduction to Radar Systems', 3rd edition, Tata Mc Graw Hill, 2001. George M. Siouris, Missile Guidance and Control Systems, Springer, 2004.

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

Syllabus

For

M.Tech

WIRELESS SENSOR NETWORK

I Semester

School of Engineering & Technology

		Fundamentals of Remote Sensing & Image	Total Lectur	re:45
Code		Interpretation	Tutorial:	15
RS20N	1201		3 – 1	I −0 =4
Course	e Objec	tives-		
• •	This co applicat It conce It detail sensors principle	burse focuses on the principles of remote sensing and imagions. entrates on aerial photography but includes satellite imagery. Is the physical principle upon which a variety of photographic operate describes the existing satellite systems used for remote es behind image interpretation and provides instruction with comp	e processing ar c and non-photo e sensing descri uter programs.	nd their ographic bes the
•	To intro To intro	duce students to Meteorological satellites.		
Unit		Contents		Hours
1	Remote Energy body to earth's	te sensing – history & development, definition, concept and y resources, radiation principles, EM Radiation and EM Spec radiation, laws of radiation 1.4 Interaction of EMR with a s surface	l principles 1.2 etrum 1.3 Black tmosphere and	10
2	Platfor geo-sta SPOT NOAA	rms – types and their characteristics 2.2 Satellites and their c ationary and sun-synchronous 2.3 Earth Resources Satellite , IRS, IKONOS satellite series 2.4 Meteorological satell A, GOES	haracteristics – es -LANDSAT, ites – INSAT,	10
3	Sensor track (WiFS, 3.4 Ba	rs – types and their characteristics, across track (whiskbro (pushbroom) scanning 3.2 Optical mechanical scanners – M PAN 3.3 Concept of resolution – spatial, spectral, tempor sic concept and principles of thermal, microwave and hypers	om) and along SS, TM, LISS, ral, radiometric pectral sensing	10
4	Basic of visi multid	principles, types, steps and elements of image interpretation ual interpretation and interpretation keys 4.3 Multidate, multiciplinary concepts 4.4 Instruments for visual interpretation	4.2 Techniques altispectral and	8
5	Remot spectra radion maps	te sensing data products and their procurement 5.2 Ground tr al signatures 5.3 Commonly used ground truth equipm neters 5.4 Display forms – computer printouts, thematic ma	uth collection – ents - use of ps, dot density	7
Course Outcomes				
At the	end of th	he course the students should be able to:		
110 (

CO 1	Describe and explain basic concepts in remote sensing Describe the various satellites used in the collection of remotely sensed data		
	-		
CO 2	Recognize and measure real-world features on aerial photographs		
CO 3	Demonstrate the principle behind image correction Perform analysis on remotely sensed data		
CO 4	sensing Describe the various satellites used in the collection of remotely sensed data		
CO 5	To introduce students to Meteorological satellites.		
Text Books	 Longley, P. A., Goodchild, M. F., Maguire, D. J., Rhind, D. W. (2002): Geographical Information Systems and Science, John Wiley & Sons, Chichester Lo, C. P., Yeung, A. W. (2002): Concepts Techniques of Geographical Information Systems, Prentice-Hall of India, New Delhi Chang, K. T. (2008): Introduction to Geographic Information Systems, Avenue of the Americas, McGraw-Hill, New York 		
Reference Books	 Korte, G. B. (2001): The GIS Book, Onward Press, Bangalore Demers, M. N. (2000): Fundamentals of Geographic Information Systems, Jhn Wiley and Sons, New DelhiBurrough, P. A. and McDonnell, R. A. (2000): Principles of GeographicalInformation Systems, Oxford University Press, New York Heywood, I., Cornelisus, S., Carver, S. (2011): An Introduction to Geographical Information Systems, Pearson Education, New Delhi Ahmed, E. L. Rabbany (2002): Introduction to Global Positioning Systems, Artech House, Boston 		

Code	Remote Sensing & GIS	Total Lectur Tutorial:	re:45 15	
RS20M202		3-1	-0 = 4	
Course Object	ive-			
 To provi overview temporal Introduc To introd To introd 	de background knowledge and understanding of principles of RS, RS Sense v of information retrieval of earth surface features using multi-resolution l imagery. tion of image processing. duce students to Delineation of degraded forest. duce students to Commonly used ground truth equipments.	ors and systems. n, multi-scale an	ıd multi-	
Unit	Contents		Hours	
1	Crops acreage and yield estimation: Introduction – Spectral properties optical & TIR region, Microwave backscattering behavior of crop ca identification and crop inventory – crop acreage estimation – vegetat Yield modeling – crop production forecasting through digital analysis condition assessment – command area monitoring – land use and lan analysis – Microwave RS for crop inventory – Case studies	es of crops in nopy – crops tion indices – is – crop id cover	10	
2	Soil mapping and conservation: Introduction – soil genesis, Soil mor characters, Soil pedology – Soil survey, Types and methods of soil so classifications – Hydrological Soil grouping – Characteristics of salin Soils – Factors influencing soil reflectance properties – principle co analysis and orthogonal rotation transformation-Soils mapping using Problem soil identification and mapping – land evaluation – Soil sed erosion – Soil loss assessment –Soil conservation – Case studies.	phological urveys – Soil ne & alkaline omponent g RS data - limentation &	10	
3	Damage assessment: Detection of pest & diseases – Flood mapping a Assessments of crop loss – Remote sensing capabilities & contribution management – Land degradation due to water logging & Salinity – c reflectance properties of stressed plants and stress detection.	and on for drought rop stresses	10	
4	Forestry: Introduction – Forest taxonomy – inventory of forestlands and density mapping using RS techniques – Forest stock mapping – degradation of forest– Delineation of degraded forest - Forest change monitoring – Forest fire mapping & damage assessment – LiDAR re for Forest studies.	- forest types factors for e detection and mote sensing	8	
5	Integrated surveys: Introduction – Integrated surveys for agriculture development – RS & GIS for drawing out action plans – water shed a Rule of RS & GIS for watershed management – Land use planning for development – Precision forming - Case studies.	& forest approach – or sustainable	7	
Course Outcomes				
At the end of t	he course, the student will be able to:			

Analyse the principles and components of photo grammetry and remote sensing.
Thermal and Microwave Remote Sensing, Different types of data products
Troubleshoot issues with projections and coordinate systems.
Collect data independently in the field and integrated it with a GIS.
Design and carry out or manage a GIS-based or remote sensing-based independent project.
 Shunlin liang , Advances in land RS: System, modeling invention and applications, 2001. Joe Boris dexon, Soil mineralogy with environmental application, Library of
congress catalog, 2004.
 James B, Introduction of Remote sensing, Third edition Campbell, third edition Guilford Press, 2002.
 John G. Lyon, Jack MCcarthy, Wetland & Environmental application of GIS,1995. Margareb Kalacska, G. Arturosanchez, Hyper spectral RS of tropical and sub

Code		Advanced Digital Signal Processing	Total Lectur Tutorial:	re:45 15
RS0M	203		3 - 1	1-0=4
Cours	e Objec	tive-		
•	This is provide The cou filter ba To und prediction To und domain	a graduate-level advanced digital signal processing (DSP) constudents with a broad perspective on the DSP field. Irse will cover various advanced topics in DSP, including: multiranks; timefrequency analysis. erstand students to short time Fourier transform (STFT), and woon and optimum linear filters; adaptive filtering; compressed sensiterstand students to Frequency domain sampling, properties of DFT erstand students to Radix-2 decimation in time domain and calgorithms.	urse that is designate signal process wavelet transforming and sparse rec by the sparse rec by the sparse rec	gned to sing and a; linear covery. equency
Unit		Contents		Hours
1	Reviev time 1 time correla freque	w of Discrete time signals and systems and frequency anal inear time invariant systems. Discrete time systems, analy linear invariant systems, implementation of discrete ation of discrete time systems ,ztransforms, linear time invar ency sElective filters. Sampling	ysis of discrete ysis of discrete time systems, riant systems as	10
2	The I domai Freque and de	Discrete Fourier transforms its properties and application n sampling, properties of DFT, linear filtering methods leancy analysis of signals using the DFT,Radix-2 decimation excimation in frequency domain algorithms	ons. Frequency based on DFT, in time domain	10
3	Design transfo	n of Digital filters, Design of FIR filters, Design of IIR filormation	lters, frequency	10
4	Multin conve conve multir	rate digital signal processing, Decimation, interpolation, rsion, filter John G. Proakis 6 design and implementatio rsion, sampling rate conversion by an arbitrary factor, ate signal processing.	sampling rate n for multirate applications of	8
5	Linear predic	[•] prediction and optimum linear filters, Forward and be tion, solution of the normal equations, wiener filters.	ackward linear	7
		Course Outcomes		
At the	end of t	he course the students should be able to:		

CO 1	Know the analysis of discrete time signals.
CO 2	To study the modern digital signal processing algorithms and applications.
CO 3	Have an in-depth knowledge of use of digital systems in real time applications
CO 4	Apply the algorithms for wide area of recent applications.
CO 5	The course will cover various advanced topics in DSP, including: multirate signal processing and filter banks
Text Books	 Proakis JG and Manolakis DG Digital Signal Processing Principles, Algorithms and Application, PHI. Openheim AV & Schafer RW, Discrete Time Signal Processing PHI.
Reference Books	 .Samuel D Stearns, "Digital Signal Processing with examples in Matlab." CRC Press .ES Gopi. "Algorithm collections for Digital Signal Processing Applications using Matlab," Springer. .Taan S.Elali, "Discrete Systems and Digital Signal Processing with Matlab," CRC Press, 2005.

Code	Advanced Digital Signal Processing Lab-III	Total Lecture:30
RS20M204	List Of Experiments	0-0-2=2
1	To find DFT / IDFT of given DT signal.	
2	Program to obtain Linear Convolution of two finite length	h sequences 8.
3	Program for Computing auto correlation.	
4	To find frequency response of a given system(transfer funequation).	nction/ difference
5	Implementation of FFT of given sequence.	
6	Determination of Power Spectrum of a given signal.	
7	Implementation of LP FIR filter for a given sequence.	
8	Implementation of HP FIR filter for a given sequence.	
9	Implementation of LP IIR filter for a given sequence.	
10	Implementation of HP IIR filter for a given sequence.	
11	Generation of Sinusoidal signal through filtering.	
12	Generation of DTMF signals .	
13	Implementation of Decimation Process.	
14	Implementation of Interpolation Process.	
15	Implementation of I/D sampling rate converters.	
16	Impulse Response of First Order and Second Order Syste	ems.

Code	Programming Wireless Sensor Networks	Total Lecture:30
RS20M205	List Of Experiments	0-0-2=2
1	Applications and its simulation.	
2	Network Simulator installation of wireless sensor network	
3	Write TCL script for transmission between mobile nodes.	
4	Write TCL script for sensor nodes with different parameter	S.
5	Generate tcl script for udp and CBR traffic in WSN nodes.	
6	Generate tcl script for TCP and CBR traffic in WSN nodes.	
7	Implementation of routing protocol in NS2 for AODV proto	ocol.
8	Implementation of routing protocol in NS2 for DSR protocol	ol.
9	Implementation of routing protocol in NS2 for TORA proto	ocol.
10	Study other wireless sensor network simulators (Mannasim	. Contiki).

Code		Discipline Specific Elective-III Total Lectur		re:45
RS20M206		Applications Of Remote Sensing In Geo science	3-	0-0=3
 Course Objective- Remote sensing is becoming an important and useful tool in mapping large, remote areas and has many applications in geosciences such as geologic and geo-structural mapping, mineral and water exploration, hydrocarbon exploration, natural hazards analysis, and geomorphology. To understand students to Object oriented GIS data modeling for urban design. To understand students to Resolution Satellite Remote Sensing 			1	
Unit		Contents		Hours
1	Urban I compos urbanis concep spatial process growth	Mapping and Spatial Analysis: Urban process, the physical structu sition of urban areas, Urbanisation process, growth trend, proble ation, information requirements for perspective planning, Scale ts and interpretation techniques for urban and regional analysis, analytical techniques, statistics and visualization, conceptual mod ses; Urban Sprawl: Change detection in Land Use Land Cover mor of urban area, trends in urban sprawl and associated problems.	ire and ms of and resolution urban GIS, delling of urban hitoring physical	10
2	Urban planniı Plan, C urban analysi	Planning: Plans – planning needs, types of plans, urban and ng; LU/LC mapping Urban Planning: Zoning of Land Use, Z Object oriented GIS data modeling for urban design, landscap infrastructure, Site selection for urban development, site sui s for utilities and civic amenities, interim master plan, Maste	regional Zonal Land Use pe architecture, tability er Plan	10
3	Urban respect for am emerge	Disaster and Emergencies Management: Mapping vulnerable to earth quake, flood, fire, terrorist attacks, and finding opti- bulances, and emergency services, GIS modeling for Hazard encies management	e zones with mum routes risk and	10
4	Large Scale M Scale M Satellin Station	Scale Mapping and Cadastral Information System: Technolo Mapping (LSM) of urban areas – Aerial Photography - High- te Remote Sensing - Electronic Distance Measurement (EDM) -	gies for Large - Resolution (1) -Total	8
5	Differe – Selec History cadastr	ential Global Positioning System (DGPS) – Issues in Large S eting appropriate technologies and methodologies. Concept of of cadastral survey, Cadastral survey methods and survey r ral map reproduction, development of cadastral information	Scale Mapping of Cadastre, naintenance, system.	7
		Course Outcomes		

At the end of	of the course the students should be able to:
CO 1	Demonstrate detailed, integrated knowledge of the application and history of remote sensing.
CO 2	Discuss the nature of electromagnetic radiation and its interaction with the earth's surface and atmosphere.
CO 3	Demonstrate a critical understanding of the differences between remote sensing systems and be aware of their characteristics and limitations.
CO 4	Competently interpret, process and evaluate remotely sensed images and be able to use remote sensing to achieve self-defined goals.
CO 5	To understand students to Resolution Satellite Remote Sensing.
Text Books	Remote Sensing of Geology Prof. R.P.Gupta
Reference Books	 Gemorphological process Savindra Singh Remote Sensing in Geosciences Nitin K. Tripathi & Vishwanath Bajpai Earth Surface System Richard J. Huggett

Code		Discipline Specific Elective-III Total Lectur		re:45
RS20M207		Remote Sensing & GIS for Agriculture & Forestry 3-0		0-0=3
 Course Objective- Expose participants in GIS and RS applications in Water management in agriculture Understand GIS and RS applications in disease/pest management. Understand participatory method in agriculture resource management in context of GIS Public dynamic and interactive agricultural based map in the internet. Understand students to – Forest taxonomy. Understand students to Remote sensing capabilities & contribution for drought management. 			ıblish nt.	
Unit		Contents		Hours
1	Crops in opti- crops i indices crop co analysi – Case	Acreage And Yield Estimation: Introduction – Spectral prop cal & TIR region, Microwave backscattering behavior of cro dentification and crop inventory – crop acreage estimation – s – Yield modeling – crop production forecasting through dig ondition assessment – command area monitoring – land use a s – Microwave RS for crop inventory studies	erties of crops p canopy – vegetation gital analysis – and land cover	10
2	Soil Mapping And Conservation: Introduction – soil genesis, Soil morphological characters, Soil pedology – Soil survey, Types and methods of soil surveys – Soil classifications – Hydrological Soil grouping – Characteristics of saline & alkaline Soils – Factors influencing soil reflectance properties – principle component analysis and orthogonal rotation transformation-Soils mapping using RS data - Problem soil identification and mapping – land evaluation – Soil sedimentation & erosion – Soil loss assessment – Soil conservation – Case studies.			10
3	Damag Assess drough stresse	ge Assessment: Detection of pest & diseases – Flood mappin ments of crop loss – Remote sensing capabilities & contribu t management – Land degradation due to water logging & S s reflectance properties of stressed plants and stress detection	g and tion for alinity – crop n.	10
4	Forestr and de degrad – Delin Forest studies	y: Introduction – Forest taxonomy – inventory of forestland nsity mapping using RS techniques – Forest stock mapping - ation of forest neation of degraded forest - Forest change detection and mor fire mapping & damage assessment – LiDAR remote sensin	s – forest types - factors for nitoring – g for Forest	8
5	5 Integrated Surveys: Introduction – Integrated surveys for agriculture & forest development – RS & GIS for drawing out action plans – water shed approach – Rule of RS & GIS for watershed management – Land use planning for sustainable development – Precision forming - Case studies.		7	
		Course Outcomes		
At the	At the end of the course the students should be able to:			

CO 1	Understand the basic concepts of GIS and Remote Sensing, Understand various integrations of GIS and RS Agriculture	
CO 2	Understand how precision farming and how it's applied in Agriculture	
CO 3	Understand Digital Image Processing Techniques in Agriculture Resource Management	
CO 4	Understand Precision farming using GIS and RS for Crop management	
CO 5	Understand students to RS & GIS for watershed management	
Text Books	 John G. Lyon, Jack MCcarthy, Wetland & Environmental application of GIS,1995. Margareb Kalacska, G. Arturosanchez, Hyper spectral RS of tropical and sub tropical forest, 2005. 	
Reference Books	 Shunlin liang , Advances in land RS: System, modeling invention and applications, 2001. 	
	• Joe Boris dexon, Soil mineralogy with environmental application, Library of congress catalog, 2004.	
	• James B, Introduction of Remote sensing, Third edition Campbell, third edition Guilford Press, 2002.	

Code		Discipline Specific Elective-III	Total Lectu	re:45
RS20N	/1208	Advanced Remote Sensing Technique	3 – 0-	- 0 =3
Course • • •	se Objectives- Provide exposure to students in gaining knowledge on concepts and applications leading modeling of earth resources management using Remote Sensing To acquire skills in storing, managing digital data for planning and development. Understand students to temperature mapping with thermal scanner data. Understand students to Passive Microwave Remote Sensing.			iding to
Unit		Contents		Hours
1	Thermal radiation principles, processes and thermal properties of materials, thermal conductivity, thermal capacity, thermal inertia, thermal diffusivity, emissivity, sensing radiant temperatures, radiant versus kinetic temperatures, blackbody radiation, atmospheric effects, interaction of thermal radiation with terrain elements, IR detection and imaging technology, thermal sensors and scanners, airborne IR surveys, satellite thermal IR images, spatial resolution and ground coverage, thermal IR broad band scanner and multispectral scanner, geometric characteristics of across track and along track IR imageries, distortions and displacements, radiometric calibration of thermal scanners, interpretation of thermal IR imagery, temperature mapping with thermal scanner data, thermal inertia mapping, apparent thermal inertia, applications of thermal remote sensing in geology, hydrogeology, urban heat budgeting.		10	
2	Passiv charac scanne	e Microwave Remote Sensing: Basics –physics of RADAR teristics of RADAR waves, microwave radiometers, pass ers and sensors, applications in atmosphere, ocean and land.	waves, spectral ive microwave	10
3	Precis: and th	ion Remote Sensing: Introduction, Spatial, Spectral, Tem eir requirement.	poral precision	10
4	Precist and the	ion Remote Sensing: Introduction, Spatial, Spectral, Tem eir requirement.	poral precision	8
5	LIDA charac princip GPS i range analys uses c	R Remote Sensing: Altimetric LiDAR: Physics of teristics of laser, laser interaction with objects, Airborne Alti- ole, Multiple return, Components of LiDAR system, INS te ntegration, measurement of laser range, calibration, flight to xyz coordinates, accuracy of various components of is of data and error removal, raw data of DEM processing, a of return strength/waveform, data classification technique	laser, spectral imetric LiDAR: chnology, INS- planning, laser LiDAR, error filtering of data s, LiDAR data	7

inte	egration with spectral data, LiDAR Applications.		
	Course Outcomes		
At the end	of the course the students should be able to:		
CO 1	Understand spatial environment and society research and applications		
CO 2	Synthesise and apply that knowledge to formulate new applications		
CO 3	Pursue a guided investigation of a topic involving remote sensing and/or GIS		
CO 4	Communicate the results of that investigation in seminar and written formats		
CO 5	Understand students to Precision Remote Sensing.		
Text Books	 Fawaz T Ulaby, Richard K Moore and Adrian K Fung, Microwave Remote Sensing active and passive, Vol. 1, Addison – Wesly Publication company 1981, 1982, and 1986. Philip N Slater, Remote Sensing, optics and optical systems. 1980 3. Robert M Harali and Simmonet, Image processing for remote sensing 1983Robert N Colwell Manual or Remote sensing Volume1, American Society of Photogrammetry 1983. 	ick of	
Reference Books	 Travett J W Imaging Radar for Resources surveys, Chapman andHall, London 1986 Remote sensing and Image Interpretation by Thomas M Lillesand and Ralph W. Keife fourth Edition, 2002, 2003, John Wiley and Sons Inc. Remote Sensing Geology by Ravi P Gupta, Second edition, 2003, Springer Remote Sensing Principles and Interpretation by Floyd F Sabins, 1997, W H Freeman And Company 	er	

Code		Discipline Specific Elective-IV Total Lectur		re:45
RS20M209		High Performance Networks	3-0-0	=3
Course C • St • St • En St • St • St	D bjectiv udents v udents v nable the udents v udents v udents v	ves- vill get an introduction about ATM and Frame relay. vill be provided with an up-to-date survey of developments in Hig e students to know techniques involved to support real-time traffi vill be provided with different levels of quality of service (Q.S) to vill get an Intelligent networks CATV. vill get a signaling and Routing.	h Speed Network ic and congestion different applicat	s. control tions.
Unit		Contents		Hours
1	Histor Intern	y of Communication Networks, Networking principles, Futu et, Pure TAM Network, Cable Network, Wireless.	re networks	10
2	Applications, Traffic characterization and quality of services, Network services, High performance networks, Network Elements., Layered applications, Open data network model, Network architectures, Network bottlenecks.			
3	3 Multicast IP, Mobile IP, TCP and UDP, Applications, FTP, SMTP. Internet success and limitations, Performance of TCP/IP Networks, Performance of circuit switched networks.		10	
4	SONET, DWDM, FTH, DSL, Intelligent networks CATV.		8	
5 Main features of ATM, Addressing, signaling and Routing, ATM header structure, ATM AAL, Internetworking with ATM.				7
		Course Outcomes		
At the end	d of the	course the students should be able to:		
CO 1	Und	erstand the communication networks principles and future no	etworks.	
CO 2	Und	erstand the network services and layered architectures.		
CO 3	Exp	lain the wireless networks, Internet and different protocols		
CO 4	Und	erstand the circuit switched networks and ATM.		
CO 5	Stuc	lents will get an Intelligent networks CATV.		
Text Books	•	Jean Walrand and Pravin variya, "High performance Communic edition, Harcourt and Morgan Kauffman, London 2000 Andrew S. Tanenbaum, "Computer networks", PHI Private limite	ation networks", ed. new Delhi	2nd

Reference	•	Gerd Keiser, MC Graw Hill International edition, optical fiber communication, third
Books		edition John M Senior, PHI limited, optical fiber communication, third edition
	•	Leon Gracia, Widjaja, "Communication Networks", Tata Mc Graw –Hill, New Delhi,
		2000. 4. Behroz a. Forouzan, "Data communication and networking ", Tata MC Graw -
		Hill, New Delhi
	•	Sumit Kasera, Pankaj Sethi, "ATM Networks", Tata Mc Graw-Hill, New Delhi, 2000

Code		Discipline Specific Elective -IV	Total Lecture:45	
RS20M210		Pattern Recognition & Machine Learning		0 -3
N 0201	R520101210 Fatterin Recognition & Machine Dearning 5 0		0-5	
Course •	e Objee Studen world r	ctives- t will understand the concepts, theory and computational algorithm ecognition tasks such as text, speech, characters, objects etc.	as needed for seve	eral real
•	Studen Simula develop econom Studen	t will understand the concepts Unsupervised learning and Clusterin ate and understand how machine will have power to accomplish the ping several examples based learning tasks in several domains nical, engineering to industrial needs. t will understand the concepts Deep Neural nets.	g lese tasks and can ranging from r	n aim at nedical,
• Unit	Studen	t will understand the concepts Ensemble/ Adaboost classifier.		Hours
	DD		<u> </u>	mours
1	PR overview-Feature extraction-Statistical Pattern Recognition-Supervised & Unsupervised Learning; Bayes decision Theory, Linear discriminant functions			
2	Paran metho	Parametric methods, ML and MAP estimation-Bayes estimation. Non parametric 10 methods; Parzen windows & k NN approaches.		
3	Dimensionality reduction (PCA) & Fishers linear discriminant. Linear perceptron and Neural Networks. Introduction to Deep Neural nets. Kernel methods and Support vector machine.			10
4	Unsupervised learning and Clustering. K-means and Hierarchical clustering. 8 Linear & Logistic Regression.			8
5	Decis Maxi	ion trees for classification. Ensemble/ Adaboost classific mization (EM). Applications to document analysis and recogn	er. Expectation nition	7
		Course Outcomes		
At the	end of	the course the students should be able to:		
СО	CO 1 After successful completion of this course, student will be able to			
СО	CO 2 Understand machine learning concepts and range of problems that can behandled machine learning.		ed by	
CO	3 C	ompare and parameterize different learning algorithms.		

CO 4	Compare and parameterize different learning algorithms.
CO 5	Student will understand the concepts Deep Neural nets.
Text Books	 Duda R O, Hart P E, and Stork D G, Pattern classification, John Wiley and Sons, 2001. Christopher M B, Pattern Recognition and Machine Learning, Springer, 2006.
Reference Books	• Sergios T and Konstantinos K, Pattern Recognition, 4 th edition, Academic Press, 2008.

Code		Discipline Specific Elective-IV	Total Lecture:45		
RS20M211		Advanced Microprocessor & Micro Controller	3-0-0=3		
Course Course	Course Objectives- This course aims at teaching primary concept of programing with machine language				
• It • T at	t also a The obj in Intel	ims to train the student for automated system design with the prog ective of this course is to become familiar with the architecture a microprocessor.	raming intelligen and the instruction	ice. on set of	
• T a: • T	The obj is the do The acc	ective of this course is to become Assembly language programminesign of various types of digital and analog interfaces. ompanying lab is designed to provide practical hands-on experie	ng will be studied	l as well rocessor	
Unit	oftware	contents		Hours	
1	The ARM Microcontroller: Basic features and comparison of ARM, PIC, AVR, Arduino, Raspberry Pie Microcontrollers, Introduction to ARM microcontroller, Internal architecture, I/O pins, Ports, Timers, Interrupts, Memory organization,15				
	Conce	pt of Pipelining, Types of hazards and their solutions.			
2	ARM Microcontroller Programming: Programming model, Instruction15classification and format, Addressing modes, Data transfer instructions,15Arithmetic instruction, Logical group of instructions, Branching instructions,15Assembly language programming of ARM.15				
3	Applic Embec	cations of ARM: ADC-DAC applications, PWM applications dded C programming of ARM, few applications – GPIO, tim	s. er.	15	
		Course Outcomes			
At the en	nd of t	he course the students should be able to:			
CO 1	CO 1 Understand the generalized architecture of advanced microprocessors and advanced microcontrollers				
CO 2 Develop algorithm/program of the advanced microcontrollers for a particular ta		ask			
CO 3	CO 3 Interface advanced microcontrollers with external peripherals				
Text Books	Text Books• Douglas V.Hall, Microprocessor and Interfacing, Tata McGraw-Hill Education.• Barry B.Bray, The Intel Microprocessors Architecture, Programming and Interfacing, Pearson Publications.			cing,	
Reference	 Reference Steve Furber, ARM System-On-Chip Architecture, Pearson Publications. Rob Toulson and Tim Wilmshurst, Fast and Effective Embedded system design- 				

Books	Applying the ARM, Elsevier.