Sanjeev Agrawal Global Educational (Sage) University, Bhopal

Master of Technology (Robotics & Mechatronics) 2 Years Degree Program

Program Educational Objectives (PEOs)

The Program MTech. (**Robotics & Mechatronics**) will develop and ability to identify and solve the real world problems related to various areas of Sciences. The course will:

- Expertise in analyzing real life problems in various Robotics & Mechatronics systems, giving appropriate solutions that are technically sound, economically feasible and socially acceptable.
- To provide a quality education for students entering the Robotics & mechatronics engineering profession or seeking careers in related fields
- Post Graduates will be engaged in ongoing learning and professional development through self study, continuing education in mechanical engineering and also in other allied fields.
- To disseminate technical information through scholarly publication, conferences and continuing education.
- Students will adopt ethical attitude and exhibit effective skills in communication, management, teamwork and leadership qualities.

Program Outcomes (POs):

At the end of the Program a graduate will be able to

- Apply the knowledge of basic sciences and fundamental engineering concepts in solving engineering problems.
- Identify and define engineering problems, conduct experiments and investigate to analyze and interpret data to arrive at substantial conclusions.
- Propose an appropriate solution for engineering problems complying with functional constraints such as economic, environmental, societal, ethical, safety and sustainability.
- Perform investigations, design and conduct experiments, analyze and interpret the results to provide valid conclusions.
- Select/develop and apply appropriate techniques and IT tools for the design & analysis of the systems.
- Give reasoning and assess societal, health, legal and cultural issues with competency in professional engineering practice.
- Demonstrate professional skills and contextual reasoning to assess environmental/societal issues for

sustainable development.

- Demonstrate Knowledge of professional and ethical practices.
- Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary situations.
- Communicate effectively among engineering community, being able to comprehend and write effectively reports, presentation and give / receive clears instructions.
- Demonstrate and apply engineering & management principles in their own / team projects in multidisciplinary environment.
- Recognize the need for, and have the ability to engage in independent and lifelong learning.

Master of Technology (Robotics & Mechatronics) 2 Years Degree Program Curriculum Components

Г

Components	Credits
Program Core (09Courses)	30
Program Electives (Discipline Specific Electives) (04Courses)	12
Generic Electives (01 Courses)	02
Project Based Learning (PBL)/MOOCs (04 courses)	12
Project (02 Courses)	28
Total	84

Sanjeev Agrawal Global Educational University (SAGE), Bhopal

School Of Engineering & Technology M Tech (Robotics & Mechatronics)

First Year – Semester First																
Course Code	Course Title	Co Ho W	Contact Hours per Week		Credit s	Du	Theory	Theory Practical								
		L	Т	Р		ETE	MS E	AS G	T A	ATT D	ES E	Tota l	CE	ES E	Tota l	Gran d Total
MA20M101	Advanced Mathematics	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
RM20M101	Manufacturin g Automation	3	1		4	3	30	05	05	10	50	100	-	-	-	100
RM20M102	Microprocess ors & Micro Controllers	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
	DSE – I	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – II	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
RM20M103	Mechatronics System Design Lab	-	-	4	2	2	-	-	-	-	-	-	20	30	50	50
RM20M104	Advance Machining Process Lab	-	-	4	2	2	-	-	-	-	-	-	20	30	50	50
PB20M101	Project Based Learning	-	-	4	2	2		-			-	-	5 0	50	100	100
-	-	Tot	al		24	-	-					500			200	700

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam , CE-continuous Evolution

	First Year – Semester Second															
Course Code	Course Title	Co Ho W	ontac ours eek	rt per	Credit s	Du H	Theory						Pract	ical		
		L	Т	Р		TE	MS E	AS G	T A	ATT D	ES E	Tota l	CE	ES E	Tota l	Gran d Total
RM20M201	Drives &Control Systems for Automatio n	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
RM20M202	Embedded System Design	3	1		4	3	30	05	05	10	50	100	-	-	-	100
RM20M203	Design of Mechanism &Manipula tors	3	1		4	3	30	05	05	10	50	100	-	-	-	100
	DSE – III	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – IV	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
GE20M201	Generic Electives I	2	-	-	2	2	30	05	05	10	50	100	-	-	-	100
RM20M204	CAD/CAM & Robotics Lab	-	-	4	2	3	-	-	-	-	-	-	20	30	50	50
PB20M201	Project Based Learning	-	-	4	2	2		-			-	-	5 0	50	100	100
-	-	Tot	al		24	-	-					600			150	750

Scheme for MTech (Robotics & Mechatronics)

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam , CE-continuous Evolutio

Scheme for MTech (Robotics & Mechatronics)

Second Year – Semester Third																
CourseCourseContactCodeTitleHours perWeekWeek			:t per	Credit s	Du	Theory							Practical			
		L	Т	Р		ETE	MS E	AS G	T A	ATT D	ES E	Tota l	CE	ESE	Tota l	Gran d Total
PB20M301	MOOC -1	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100
PB20M302	MOOC - 2	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100
RM20M301	Dissertati on Phase- I	-	-	2 4	12	2		-			-	-	20 0	20 0	400	400
-	-	Tot	al		20		-					-	-		-	600

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam , CE-continuous Evolution

Scheme for M.Tech (Robotics & Mechatronics)

Second Year – Semester Fourth																
Course Code	Course Title	C H W	onta ours 'eek	ct per	Credit s	I Du	Theory						Practio	cal		
		L	Т	Р		ETE ration	MS E	AS G	T A	ATT D	ES E	Tota l	CE	ESE	Tota l	Gran d Total
RM20M401	Dissertatio n Phase-II	-	-	3 2	16	2		-			-	-	25 0	25 0	500	500
-	-	Tot	al		16		-					-	-		-	500

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam , CE-continuous Evolution

Master of Technology (Robotics & Mechatronics) 2 Years Degree Program

Distribution of credits across all components

SEM No.	Prog. Core	Discipline Specific Electives (DSE)	Generic Electives (GE)	Project Based Learning (PBL)/ MOOCs	Project	Total Credit
I.	16	6	-	2	-	24
II.	14	б	2	2	-	24
III.	-	-	-	8	12	20
IV.	-	-	-	-	16	16
Total	30	12	02	12	28	84

Master of Technology (Robotics & Mechatronics)

List of Program (Discipline Specific) Electives (DSE)

	First Year – Semester One									
SN	Course Code	Course Title (DSE-I)								
1.	RM20M105	Product Design & Development								
2.	RM20M106	Wireless Sensor Networks								
3	RM20M107	Fluid Power System Design								
	First Year – Semester One									
SN	Course Code	Course Title (DSE-II)								
1.	RM20M108	Simulation, Modelling & Analysis								
2.	RM20M109	Robot Dynamics & Analysis								
3	RM20M110	Operations Management								
		First Year – Semester Second								
SN	Course Code	Course Title (DSE-III)								
1.	RM20M205	Numerical methods & computer programming								
2.	RM20M206	Micro-electro-mechanical systems								
3.	RM20M207	Ultra-precision machining								
		First Year – Semester Second								
SN	Course Code	Course Title (DSE-IV)								
1	RM20M208	Artificial Intelligence								
2	RM20M209	Virtual Instrumentation								
3	RM20M210	Metrology & Computer Aided Inspection								

Generic Electives List of Generic Electives

S.NO	Code	Nomenclature of the course	Offering School
1.	GE20M01	Java Programming	School of Engineering & Technology
2.	GE20M02	Python Programming	School of Advance Computing
3.	GE20M03	Matlab Programming	School of Engineering & Technology
4.	GE20M04	C++ Programming	School of Engineering & Technology
5.	GE20M05	R Programming	School of Advance Computing
6.	GE20M06	CAD/CAM Software	School of Engineering & Technology

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

Syllabus

For

M Tech

ROBOTICS & MECHATRONICS

I Semester

School of Engineering & Technology

M Tech (Robotics & Mechatronics Engineering) Syllabus I Semester

Code		Advanced Mathematics	Tot Lectur Tutoria	al :e:45 al: 15
MA20M1	01		3	-1-0=4
Course Ob This con Mathematic	jective urse is s. Prin To in their To in Dem To e reduc	es design to develop coherent understanding of various a ciple course objectives are: ntroduce students to the theoretical distributions, samplin applications troduce the students to the solution of partial differential onstrate an understanding to the theory and applications of xtend the concept of the computer algorithms related ction and feature extraction. ce the concepts of Stochastic process and Markov process	areas of Ac g distributi equation of linear alg to dimens s transition	lvanced ons and gebra ionality
UNIT		Contents		Hours
1	Proba Bino elem relati	ability, compound probability and discrete random mial, Normal and Poisson's distributions, Sampling dis entary concept of estimation and theory of hypothesis, ons.	variable. stribution, recurred	10
2	Solut varia Parat FT, I	tion of Partial Differential Equation (PDE) by sepa ble method, numerical solution of PDE (Laplace, I bola) using finite difference methods, Elementary prop DFT, WFT, Wavelet transform, Haas transform.	ration of Poisson's, perties of	9
3	Finite polyr Num Simp meth	e differences: forward, backward and central difference nomial interpolation: equally spaced and unequally spa erical Differentiation, Numerical integration- Trapezo oson1/3 rd and 3/8 th rules; Initial value problems - Tay od, Euler and modified Euler methods, Runge- Kutta met	operators, aced data; bidal and lor series thods.	9
4	Solut facto squat Ortho least- Princ	tion of Linear systems– Gaussian elimination met rization method, Cholesky's factorization method. Lin res problems - Normal equations, QR method (or Gram p- normalization), Singular value decomposition (SVD) -squares problems, numerical rank determination v ripal Component Analysis.	hod, LU ear least- n Schmidt for linear via SVD,	9
5	Stoc	chastic process, Markov process transition probability pability matrix, just and higher order Markov process. A	transition oplication	8

	of Eigen value problems in Markov Process, Markov chain. Queuing system, transient and steady state, traffic intensity, distribution queuing system, concepts of queuing models (M/M/1: Infinity/ Infinity/ FC FS), (M/M/1: N/ Infinity/ FC FS), (M/M/S: Infinity/ Infinity/ FC FS).									
	Course Outcomes									
At the end of the course the students should be able to:										
CO1	Be able to understand probability, sampling distribution and discrete random variable.									
CO2	Understand the terms and their applications of Solution of Partial Differential Equations									
CO3	Understand the numerical methods and their use in obtaining approximate solutions to otherwise intractable linear/non-linear system of equations and differential equations.									
CO4	Analyse the fundamental use of matrices in the computer algorithms related to dimensionality reduction and feature extraction.									
CO5	Implement Stochastic process, Markov process transition probability transition probability matrix and Markov process.									
Text Book	 S C <i>Gupta</i> & V K <i>Kapoor</i>, 2014, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, Delhi. Gilbert Jimmie, 2010, Gilbert, Linear Algebra And Matrix Theory, Elsevier India. 									
	• Dr B S Grewal, 2014, Numerical Methods in Engineering & Science: With Programs in C, C++ & MATLAB, 10 th Edition, Khanna Publishers.									
Reference Books	 Rohatgi, V.K., and Saleh, A.K.Md. Ehsanes, 2009, An introduction to probability and statistics. Second Edition, Wiley India. L. N. Trefethen and David Bau, 1997, Numerical Linear Algebra, SIAM, Philadelphia. 									

Code	Manufacturing Automation	Total Lecture:45 Tutorial: 15
RM20M101		3-1-0=4

Course Objectives:

To learn the concepts of automation systems in manufacturing sector.

- To be aware of intelligent machining operations.
- Acquire the fundamental concepts of automated flow lines and their analysis
- Illustrate adaptive control systems and automated inspection methods.

Unit	Contents	Hours
1	Automation :Introduction, automation principles and strategies, basic elements of advanced functions, levels modeling of manufacturing systems Computer Aided Process Planning Computer Aided process planning, Generative, variant, hybrid CAPP, Material requirement planning (MRP), Manufacturing resource planning (MRP II), production planning and control system, master production schedule, Capacity planning, Shop floor control.	10
2	Computer Aided Manufacturing Group Technology, Part family, Sensor technologies, Automated inspection and testing, Coordinate measuring machines, Machine vision, Rapid prototyping	10
3	Automated handling and storage system Automated material handling systems – AGV, Transfer mechanism - Buffer storage – Analysis of transfer lines, Robots in material handling, Automated storage and Retrieval Systems (AS/RS) – carousel storage – Automatic data capture – bar code technology, Automated assembly systems.	9
4	Automated Control structures in Manufacturing systems Automated inspection and testing, Sensor technologies, Coordinate measuring machines, Machine vision, Group Technology, Part family, Programmable controllers.	8
5	Manufacturing support Systems Flexible manufacturing, Building blocks of FMS, FMS layout, FMS planning and implementation issues, Just-in-Time Manufacturing, lean manufacturing, agile manufacturing, Cellular manufacturing, Intelligent Manufacturing Systems Artificial Intelligence based systems, Knowledge - Based Systems, Expert Systems Technology, Agent Based Technology, Virtual Business, e- Commerce Technologies, Global Manufacturing Networks, Digital enterprise technologies. Introduction to PLM.	8
	Course Outcomes	
At the en	d of the course the students will be able to:	
CO 1	Identify the basic components required for manufacturing systems automation	

CO 2	Intend an automated material handling and inspection systems with robotics			
CO 3	To know the fundamentals about smart manufacturing and Intelligent manufacturing• systems			
CO 4	Realize the importance and potential of Sensor technologies in the context of			
	manufacturing engineering.			
CO 5	Interface sensor and actuator for a mechatronic system.			
Text Books	• Mikell P. Grover, Automation, Production Systems and Computer Integrated Manufacturing, Fourth Edition, Pearson Education			
	 P. Radhakrishnan, S. Subramanyan, V. Raju, CAD/CAM/CIM, New age International 			
Referen	• Mikell P. Grover, Enory W. Jr Zimmers, CAD/CAM (2006), Pearson Education.			
ce	• P. N. Rao, CAD/CAM: Principles and Applications (2010), Tata Mc Graw Hill.			
Books	 Tien-Chein Chang, Richard A. Wysk, Hsu-Pin (Ben) Wang, Computer Aided Manufacturing (2009), Pearson Education. 			

			Tota	al
		Microprocessors & Microcontrollers	Lectur	e:45
Code			Tutoria	al: 15
RM20M102			3	-1-0=4
Course Ob	jective	28:		
• The	Purpo	se of the course is to provide students with the Knowledge	e	
of M	licropr	rocessors and Microcontroller.		
• To s	solve re	eal world problems in an efficient manner, this course also	emphasis	on
arch	itectur	e. Programming and system design used in various day to	dav gadge	ets.
• Kno	ow the	internal organization addressing modes and instruction s	ets of 8085	5
proc	ressor	internal organization, addressing modes and motiverion s		, ,
UNIT		Contents		Hour
		contents		S
1	Intro	duction to Microprocessor 8085 Microprocessor Archite	cture and	10
	Its O	perations, Memory, Input/Output (I/O), Microcomputer	System,	-
	Inter	facing Devices, Basic Instructions, Programming Technic	ues with	
	Addi	tional Instructions, Counter and Timing Delays, St	ack and	
	Subr	outines, Code Conversion, BCD Arithmetic and 16-I	Bit, Data	
	Oper	ations, Software Development Systems and Assemblers.		
2	8086	Microprocessor Architecture 8086 CPU Pins and	Signals,	9
	Oper	ating Modes, Minimum Mode, Maximum Mode, System	Interrupt	
	Coni Movi	igurations, Bus Timing Diagrams, Minimum Mo	de, and	
3	8086	Assembly Language Instruction and Programming Ir	struction	0
5	Set 1	Registers and Flags. General Purpose Registers. Pointer F	Registers.)
	Index	Registers, Segment Registers, Flags Register, How Ins	structions	
	Affec	ct the Flags Register, Addressing Modes, Program	Memory	
	Addr	essing Modes, Data Memory Addressing Modes, Ad	dressing	
	Mode	e Byte, Segment Override, Memory Addressing	Tables,	
	Instru	action Set Mnemonics, Assemblers. Dependent Mnemoni	cs, 8086	
4	8051	Microcontroller 8051 Architecture Interfacing, 8051 Ir	struction	9
	Set, 8	3051 Application,		
5	8085	/ 8086 / 8051 Interfacing Interfacing Peripherals (1	/O'S) &	8
	Appl	ications, Parallel Input/Output and Interfacing App	lications,	
	Keyb	ooard & display Interface, Interrupts Interfacing Data Co	onverters,	
	Prog	rammable Interface Devices, General Purpose Progr	ammable	
	Perip	heral Devices, Serial I/O & Data Communication Microp	processor	
	Appl	ications.		
	6.1	Course Outcomes		
At the end	At the end of the course the students should be able to:			

CO1	acquire knowledge about microprocessors and its need
CO2	write the programs using 8085 and 8086 microprocessor
CO3	know the internal architecture and interfacing of different peripheral devices with 8085 and 8086 microprocessor
CO4	design the system using 8051 processors
CO5	Understand 8085 / 8086 / 8051 Interfacing Interfacing Peripherals (I/O'S) & Applications.
Text Books	 Gaonkar, Ramesh, Microprocessor Architecture, Programming and Applications with the 8085, Penram International Publishing India Pvt, Ltd., 2005. Hall, D.V, Microprocessor and Interfacing, Tata McGraw Hill Publishing Company, 2006 Ayala, Kenneth J, The 8051 Microcontroller: Architecture, Programming, and Application, 2008. Mckenzie, Scott, The 8051 Microcontroller, PHIs, 1995.
Reference Books	 Rafiquzzaman, M., Microprocessors and Microcomputer-Based System Design, CRC Press, 1995 . Gibson, Glenn A, Liu, Yu-Cheng, Microcomputer Systems: The 8086/8088 Family Architecture Programming And Design, Pearson, 2001. . Simon, David E, An Embedded System Primer, Pearson Education, 2005.

	Discipline Specific Elective-I		
Code	Product Design & Development	Total Lect	ure:45
RM20M105		3.	-0-0=3
Course Object	tives:		
• The foc	cus of Product Design and Development		
• It will h	help in integration of the marketing		
• To des	ign, and manufacturing functions of the firm in creating a new p	product	
Awarer	ness of the role of multiple functions in creating a new product (e.g. marketir	ng,
finance	, industrial design, engineering, production).		
Unit	Contents		Hours
1	Introduction: Introduction to Product Design, Design by Evolution and Innovation, Essential factors of product design, Production consumption cycle, Flow and value addition in Production consumption cycle.		
	Functional & Aesthetics Consideration: Basic design considerations, Role of Aesthetics in product design, Basic concept and elements of Visual design, Functional design practice.		
2	Manufacturing Consideration: Producibility Requirements in the design of machine components, Forging design, Pressed component design, Design for machining, Ease of location and Clamping, Some additional aspects of production design, Design of powder metallurgical parts, Redesigning on basis of production consideration		
3	Legal & Economic Considerations: Product value, Design for safety, reliability and Environmental considerations, Economic analysis, profit and competitiveness, break even analysis, Economics of a new product design, Concurrent Design, Quality function deployment, Reverse engineering		
4	Value Engineering: Value, Nature and measurement of value, Maximum value, Normal degree of value, Importance of value, The value Analysis Job Plan, Creativity, Steps to problem solving and value analysis, Value Engg., Idea generation check list, Cost reduction, materials and process selection in value engineering		
5	5 Product Development: Definition and Objective, Role of designer in product development, Manufacturing & economic aspects of product development, Product promotion & development		
Course Outcomes			
At the end of the	he course the students will be able to:		

CO 1	Competence with a set of tools and methods for product design and development.
CO 2	Confidence in your own abilities to create a new product.
CO 3	Awareness of the role of multiple functions in creating a new product (e.g. marketing, finance, industrial design, engineering, production).
CO 4	Ability to coordinate multiple, interdisciplinary tasks in order to achieve a common objective
CO 5	Reinforcement of specific knowledge from other courses through practice and reflection in an action-oriented setting.
Text Boks:	 Kail T Ulrich and Steven D Eppinger, "Product Design and Development." AK Chitale and Gupta, "Product Design and Engineering"
Reference Books:	 Niebel & Draper, "Product Design and Process Engineering" Middendorf Marcel Dekker, "Design of Systems and Devices"

	Discipline Specific Elective-I		
Code	Wireless Sensor Networks	Total Lect	ure:45
RM20M10	6		3-0-0=3
Course Ob	jectives:		
 To i netv To i To j and 	introduce the characteristics, basic concepts and systems issues works illustrate architecture and protocols in wireless sensor networks identify the trends and latest development of the technologies in provide a broad coverage of challenges and latest research result management of wireless sensor networks	in Wireless se the area ts related to th	nsor ne design
Unit	Contents		Hours
1	Introduction, Applications of Wireless Sensor Networks, WS IEEE 802.15.4, Zigbee. Network Architectures and Proto Network architectures for WSN, classification of WSN, proto WSN. Wireless Transmission Technology and Systems Radio Available Wireless Technologies Wireless Sensor Technology Technology, Hardware and Software, Sensor Taxonomy, W Environment	N Standards, col Stack – ocol stack for Technology, Sensor Node N Operating	10
2	Medium Access Control Protocols for Wireless Senso Fundamentals of MAC Protocols, MAC Protocols for WSNs, Based protocols: Power Aware Multi-Access with Signal Gathering MAC, Contention-Free Protocols: Low Energy Clustering Hierarchy, B-MAC, S-MAC. Dissemination Protocol Sensor Network.	or Networks , Contention- ling - Data- gy Adaptive ol for Large	10
3	Deployment and Configuration Target tracking, Local Positioning, Coverage and Connectivity, Single-hop and Localization, Self-Configuring Localization Systems. Routing Challenges and Design Issues in Wireless Senso Routing Strategies in Wireless Sensor Networks, Routing pr centric, hierarchical, location based energy efficient routing en Data Dissemination and Gathering.	ization and Multi hop or Networks, otocols: data tc. Querying,	9
4	Energy Efficiency and Power control Need for energy efficience control in WSN, passive power conservation mechanisms, a conservation mechanisms Operating Systems For Wire Networks Operating System Design Issues, TinyOS, Con- management, Protothreads, Memory and IO management.	cy and power active power eless Sensor atiki – Task	8
5	Sensor Network Platforms And Tools Sensor Node Hardwa Micaz, Programming Challenges, Node-level Software Platf level Simulators, State-centric Programming	are – Tmote, čorms, Node-	8

Course Outcomes				
At the end	At the end of the course the students will be able to:			
CO 1	Architect sensor networks for various application setups.			
CO 2	Explore the design space and conduct trade-off analysis between performance and resources.			
CO 3	Determine suitable medium access protocols and radio hardware.			
CO 4	Design of Power control mechanisim and apply.			
CO 5	To have a basic knowledge of Sensor Network Platforms and to carry out various inspection in accordance with the established procedures.			
Text Books	 Kazem Sohraby, Daniel Minoli, Taieb Znati, "Wireless Sensor Networks, Technology, Protocols and Applications", Wiley, 2007 Holger Karl, Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005 			
Reference Books	 Jun Zheng, Abbas Jamalipour, "Wireless Sensor Networks: A Networking Perspective", Wiley, 2009. Ian F. Akyildiz, Mehmet Can Vuran, "Wireless Sensor Networks", Wiley, 2010 Ibrahiem M. M. El Emary, S. Ramakrishnan, "Wireless Sensor Networks: From Theory to Applications", CRC Press Taylor & Francis Group, 2013 			

	Discipline Specific Elective-I		
Code	Fluid Power System Design	Total Lect	aure:45
RM20M10	7		3-0-0=3
Course Ob	jectives:		
• Cou	rse provides comprehensive introduction to fluid power system lraulics and pneumatics.	design includ	ing both
• To 1	understand concepts and relationships surrounding force, pressu	re, energy	
and	power in fluid power systems.		
To e actu pow	examine concepts centering on sources of hydraulic power, rotat ators, distribution systems, hydraulic flow in pipes, and control ver systems	ry and linear components i	n fluid
Unit	Contents		Hours
1	Introduction to Fluid Power Definition- Hydraulics vs Pneur symbols - Application –Pascal's Law- Transmission and mul force - Basic properties of hydraulic fluids - static head pres loss – Power - absolute pressure and Temperature - gas laws- v	natics – ISO tiplication of sure-pressure racuum	10
2	Hydraulic and Pneumatic Power Supply Source Hydraulic Pump - graphic symbol- pump types -pump flow and pressure- pump drive torque and Power- pump efficiency –air compressor- graphic symbol-compressor types -compressor sizingvacuum pumps		
3	Control Elements Directional control valves - Pressure con Flow control Valves -electronic control components - Valve co General valve analysis, valve lap, flow forces and lateral for valves. Series and parallel pressure compensation flow co Flapper valve Analysis and Design, Time delay valve, Prop Servo valves.	trol valves - onfigurations, ces on spool ntrol valves. portional and	9
4	Circuits DCV controlling single acting, double acting Regenerative circuits, high low circuits, Synchronization accumulator sizing. Intensifier circuits, Meter-in, Meter-out a circuits; Fail Safe and Counter balancing circuits- pressur circuitaccumulator circuits - AND and OR valve circuit Desig Design and analysis of typical hydraulic and pneumatic circu method consideration for sequential circuits-intuitive ci method-cascade method- sequential logic circuit design using compound circuit design-step counter design	cylinder - circuits, and and Bleed-off re intensifier n of Circuits uits - Design rcuit design KV method-	8

5	Electro-Hydraulic and Electro-Pneumatic systems Electrical control of pneumatic and hydraulic circuits-use of relays, timers, counters, Programmable logic control of hydraulic and pneumatic circuits, PLC ladder diagram for various circuits, motion controllers, Servo systems – fundamentals. Applications in Assembly, Feeding, Metalworking, materials handling and plastic working. Fluid Power System Maintenance Introduction, Sealing Devices - Reservoir System - Filters and Strainers - Beta Ratio of Filters - Wear of Moving Parts - Gases in Hydraulic Fluids - Temperature Control - Troubleshooting	8		
	Course Outcomes			
At the end of	of the course the students will be able to:			
CO 1	Know the fundamental principles and analytical modeling of fluid power components and its symbols, circuits, and systems			
CO 2	Acquire knowledge of the applications of fluid power in various engineering fields.			
CO 3	To know the benefits and limitations of fluid power compared with other power transmission technologies			
CO 4	Interface PLC with hydraulic and pneumatic systems.			
CO 5	Ability to learn effective practices in uses fluid field and understand Electro- Hydraulic and Electro-Pneumatic systems .			
Text Books	 James L.Johnson, Introduction to Fluid power(2003), Delmar Thomson Learning Inc. James R. Daines, Fluid Power: Hydraulics and Pneumatics (2012), Goodheart- willcox Publishers 			
Reference Books	 Ahmed Abu Hanieh, Fluid Power Control (2012), Cambridge International Science Publishing Ltd. Anthony Esposito, Fluid Power with Applications (2010), Pearson Higher Ed. M GalalRabie, Fluid power engineering (2009), Mc-Graw Hill. 			

	Discipline Specific Elective-II		
Code	Simulation, Modeling & Analysis	Total Lect	ure:45
RM20M1	08		3-0-0=3
Course O	bjectives:		
	• to provide an understanding of methods, techniques and too	ols for modelin	g,
	• To Provide simulation and performance analysis of comple	x systems such	n as
	communication and computer networks.		
Unit	Contents		Hours
1	Introduction: A review of basic probability and statistics, ran and their properties, Estimation of means variances and correl	dom variables ation.	10
2	Physical Modelling: Concept of System and environment, Continuous and discrete systems, Linear and non-linear systems, Stochastic activities, Static and Dynamic models, Principles of modeling, Basic Simulation modeling, Role of simulation in model evaluation and studies, advantages of simulation		
3	System Simulation: Techniques of simulation, Monte Carlo method, Experimental nature of simulation, Numerical computation techniques, Continuous system models, Analog and Hybrid simulation, Feedback systems, Computers in simulation studies, Simulation software packages.		
4	System Dynamics: Growth and Decay models, Logistic cu dynamics diagrams. Probability Concepts in Simulation variables, discrete and continuous probability functions, Rand Generation of Random numbers, Variance reduction Determination of length of simulation runs. Simulation of Systems: Building of Simulation models, Simulation of tran rotational mechanical systems, Simulation of hydraulic system	rves, System n: Stochastic lom numbers, techniques, f Mechanical nslational and ns.	8
5	Simulation of Manufacturing Systems: Simulation of waiting Job shop with material handling and Flexible manufactu Simulation software for manufacturing, Case studies.	line systems, ring systems,	8
	Course Outcomes		
At the end	of the course the students will be able to:		
CO 1	Students will understand the techniques of modeling in the con	ntext of hierard	chy of

	knowledge about a system and develop the capability to apply the same to study			
	systems through available software.			
CO 2	Students will learn different types of simulation techniques			
CO 3	Students will learn to simulate the models for the purpose of optimum control by using software.			
CO 4	Develop simulation term projects that address critical research issues and/or industrial applications in systems architecting and engineering.			
CO 5	Overview current and future research in the disciplines, and the future directions of modeling and simulation in general.			
Text Books	 System Simulation Geoffrey Gordon Prentice Hall System Simulation: The Art and Science Robert E. Shannon Prentice Hall System Modelling and Control J. Schwarzenbach and K.F. Gill Edward Arnold 			
Reference Books	 Modelling and Analysis of Dynamic Systems Charles M Close and Dean K. Frederick Houghton Mifflin Simulation of manufacturing Allan Carrie John Wiley & Sons 			

		Discipline Specific Elective-II		
Code		Robot Dynamics & Analysis	Total Lect	aure:45
RM20M	109			3-0-0=3
Course (Object	ives:		
	•	To develop the student's knowledge in various robot workspace.	structures a	nd their
	•	To develop student's skills in performing spatial transform rigid body motions.	ations associa	ated with
	•	To develop student's skills in perform kinematics analysis o To provide the student with knowledge of the singularity the operation of robotic systems.	f robot systen issues associa	ns. ated with
Unit		Contents		Hours
1	Basic Types Inspe Magn	concepts, Robot anatomy, Robot configurations, Basic ro s of drives, Applications-Material handling, processing,-A ction, safety considerations. End effectors, Classification, letic, Vacuum, Adhesive. Force analysis and Gripper design.	bot motions, ssembly and Mechanical,	10
2	Senso and Mach Pictur consid	brs in robot systems, non optical and optical position sense Acceleration, Range, Proximity, touch, Slip, Force, Tor ine vision system, Image components, Representation, re coding , Object recognition and categorization deration,	ors, Velocity que sensors, Hardware , - Software	10
3	opera Prope Manij syster ,Traje	tions - Translational transformations and Rotational transformation matrices-Homogeneous transform pulator, Robot kinematics, Forward solution, Inverse solut in concepts, Analysis, control of joints, Adaptive and op ectory Planning,	nsformations, mations and ion , Control timal control	9
4	Robo progr	t Dynamics, Langragian formulation, D Alemberts prir amming Methods - Robot programming languages - VAL L	nciple Robot anguage,	8
5	Comp Telec	outer controller and Robot communication, Economics hiric robots.	of Robots,	8
		Course Outcomes		
At the en	nd of th	ne course the students will be able to:		

CO 1	Comprehensive fundamental and technical knowledge of Robotics
CO 2	Ability to apply computing of design criteria's of robot elements
CO 3	Ability to apply the knowledge of specifying the robot elements and selection of robots
CO 4	Ability to analyze robots through Kinematic and Dynamic study & its programming ea.
CO 5	Ability to learn effective practices in uses of robots, robot economics and novel advancements in this ar
Text Books	 M. P. Grover, M. Weiss, R. N. Nagel, N. G. Odrey, : Industrial Robotics Technology, Mc Graw Hill book Co. 1995 Robert J. Schilling, Fundamentals of Robotics-Analysis and Control, Prentice Hall India, 1990. Fu K.S., Gonzalez R.C, and Lee C.S.G., "Robotics control, sensing, vision, and intelligence ", McGraw-Hill Book Co., 1987.
Reference Books	 Klafter R.D., Chmielewski T.A. and Negin M., "Robot Engineering An Intergrated approach ", Prentice Hall of India, New Delhi, 1994. Deb S.R., "Robotics Technology and Flexible Automation ", Tata McGraw- Hill Publishing Co., Ltd., 1994.6. Craig J.J., "Introduction to Robotics Mechanics and Control", Addison-Wesley, 1999

		Discipline Specific Elective-II		
Coo	le	Operations Management	Total Lect	ure:45
RM20N	/1110			3-0-0=3
Course	Object	tives:		
•	To deve provide	elop an understanding of how the operations, have strategic i a competitive advantage in the workplace.	mportance an	d can
• '	To unde	erstand the relationship between operations and other busine	ss functions.	
•	10 impa manage	art concepts of operation management and product life cycle	. operation	
	experin	inents, computer simulation methods, and other modern engineering	neering tools.	
Unit		Contents	U	Hours
1	Opera revolution from proce time, Eab-1	ations Management (OM): Definition, history, industrution (ERP); tangible and service products continuum, emp agriculture, manufacturing to service; customer orien ss formats on product volume-variety graph; concept of critical WIP, bottle neck thruput and cycle-time with examp 2: Little's law best and worst case performance thruput and	rial and IT loyment shift tation; basic raw process ple of Penny- ad cycle time	10
	formu busin comp winne (asser	Ila in practical-worstcase; criteria of performance, de ess strategy, environment scan, SWOT, Porters' five etency, competitive priorities of cost, quality, time and flex ers; production strategy of Make To Order-MTO, MT mble to order); productivity, standard of living and happines	cision area, forces, core cibility, order S and ATO s.	
2	Produ innov simpl modu used peopl provi other globa	act:-Life Cycle and PLC management; design steps, evation, traditional v/s concurrent design, form and functification and standardization, differentiation/ mass cular design, design for mfg and environment (DFM, DFE), in design. Service characteristics and classification ethings v/s direct-indirect service actions, service triangle der and system; technical and functional (delivery) service service performance factors, Valerie's service qualization of services	volution and ional design, ustomization, technologies based on of customer, e quality and ality model;	10
3	Proce and graph MTB analy of qu low variar	esses: transformation and value addition, selection based on flexibility considerations; reliability, failure density and as for constant hazard bath-tub curve, series and parallel F; availability and maintainability, preventive maintenance, sis; replacement models; Quality-definition, Taguchi loss f ality, chain action of improving quality to productivity to m cost; product and process specs; the funnel-marble exp nce reduction, process capability, six sigma and its implet	cost, quality hazard rate components, TPM; value function, cost otivation and periment and mentation by	9

]	DMAIC, QFD, TQM and ISO-9000.		
4	Plant-facilities: Impact of organization strategies on choice of region and site, existing or new organization, decision-affecting factors for location, load distance, dimensional and factor analysis methods, Brown-Gibson model, foreign locations, non-profit govt. services (health, school) locations. facility layout objectives and factors, basic layouts, merits and optimization; subjective relationship ranking method, computer programs CRAFT and 3-d modeling; problems of inventories flow and operators in process layout and inflexibility in product layout, flexible cellular layout, group technology; capacity and equipment selection, importance of spare capacity to reduce Q- length and cycle time.	8	
5	Programs/ procedures of production control (PPC): corporate and production planning process, aggregate plan, master production schedule and material planning; matching supply to demand fluctuations over time horizon, Forecasting elements, time series, regression, causal and Delphi methods; use of LP in aggregate plan and HMMS model, assembly line balancing, elemental task, station time and cycle time, balance delays; sequencing, Johnson method for njob 2/3 m/c, NP hard job-shop sequencing, heuristic dispatch rules; synchronous mfg, TOC, drum-buffer-rope and focus on pottleneck as control point; JIT lean mfg, Kanban and CONWIP shop floor controls, Kaizen.	8	
	Course Outcomes		
At the end of the course the students will be able to:			
CO 1	1 Identify the elements of operations management and various transformation processe to enhance productivity and competitiveness.		
CO 2	Analyze and evaluate various facility alternatives and their capacity decision develop a balanced line of production & scheduling and sequencing techniqu operation environments	is, ies in	
CO 3	Develop aggregate capacity plans and MPS in operation environments.		
CO 4	Plan and implement suitable materials handling principles and practices in the operations.	ne	
CO 5	Plan and implement suitable quality control measures in Quality Circles to T	'QM.	
Text Books	 Chary SN; Production and Operations Management; TMH Hopp W and Spearman M; Factory Physics; TMH . Gitlow Howard et al; Quality Management; TMH Stevenson W J; Operations Management; TMH 		
Reference Books	 Khanna RB; Production and Operations Management; PHI Vollman, Berry et al; Manufacturing planning and control for SCM; Chase Richard B et al; Operations management; SIE-TMH Adam EE and Ebert RI: Production and Operations Management 	TMH.	

Code	Mechatronics System Design Lab	Practical:30
RM20M103		0-0-4=2
	Contents	Hours
1	Calibration of flow meters.	
2	Calibration of Thermocouples/ RTD.	
3	Study of Load Cells.	
4	Vibration measurement using accelerometers.	
5	Displacement measurement/ level measurement.	
6	Verification of P, P+I, P+D, P+I+D control actions.	
7	Study of XY position control systems.	
8	Study of linear conveyor control system.	
9	Study of rotary table positioning systems.	
10	Study of different switches and relays.	
11	Study of Microcontrollers	
12	Analysis of control system using software like MATLAB/SIMULINK equivalent.	C or
13	Development of ladder diagram/programming PLC for level control, j control	position

Code	Advance Machining Process Lab	Practical:30
RM20M104		0-0-4=2
	Contents	
1	Machining and material removal using EDM machine	
2	To study various applications of Electrochemical Machining process	
3	To study generation and control of electron beam for machining appli	ication
4	Machining of Turbine blades using EBM and ECM	
5	To study Hybrid Unconventional Machining Process	
6	To study Magnetic Abrasive finishing Process	
7	To study Economic Considerations of different Unconventional Mac	hining Process
8	To study Abrasive water jet machining process	
9	Experiment on sliding wear test rig	

Code	Project Based Learning I	Practical:30
PB20M101	(0-0-4=2
	Contents	Hours
	In this course we have only practical part and student are allowed to devlop small project on the basis of the knowledge .They have required however ,if a student show interest in the basis technology of the Computer Science/Electronics/Mechanical/Civil Engineering. Then appropriate guidance will be given by relative faculty member	30

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

Syllabus

For

M.Tech

ROBOTICS & MECHATRONICS

II Semester

School of Engineering & Technology

MTech(Production Engineering)

Syllabus-II Semester

Cod	CodeDrives & Control Systems For AutomationTotal LectTutoria		ure:45 l: 15	
RM20M	01			3-1-0=4
Course C	ojectives:			
• T p • T • T	o understand the basic con rformance. I know the different meth I introduce the controller	ncepts of different types of electrical mac nods of starting D.C motors and induction s for automation.	chines and the n motors.	ir
Unit		Contents		Hours
1	Introduction: Working p motors, Difference betw characteristics, Power w Concepts of linear and fr cycle control, Flux Vector	principle of synchronous, Asynchronou we Induction and servo motors, Torqu v/s. Speed characteristics, Vecto induc rameless motors, Selection of feedback or control.	is & stepper ie v/s speed ction motors, system, Duty	10
2	Industrials Drives: DC a control and application of servomotor, selection cri- motor, electric drive, typ advantages of drives over electric braking, rheosta converters	and AC motors operation and selection of brushless DC motor, PMSM, stepper iteria for servo motor and servo amplifue pes of industrial drives, the characteristic er other prime movers, motor rating, he atic and regenerative braking principl	n, method of r motor, A.C ier, universal tics of drive, ating effects, es in power	10
3	Motion laws for rotary a conceptsand principles o drives, gear drives, Se gearing, and control a amplifier	nd linear systems: converting rotary to l f ball screws, rack and pinion, belt and lection of converting systems, Dynam pproaches of Robots, Control loops u	inear system, pulley, chain nic response sing Current	9
4	Introduction to Program structure of PLC, workin flag processing's, type programming software methods of PLC program mathematical operators casks and configuration, PLC controller	mable Logic Controllers: Definitions o ag principles, data storage methods, inp s of variables, definition of firmwar tool and interfacing with PC (RS232 ming (LD, ST, FBD & SFC), function b & data types, array & data structure, I difference between relay logic and PLC	f PLC, basic puts / outputs re, software, & TCP-IP), plocks logical PID, types of , selection of	8
5	Logic, instructions & A Ladder v/s PLCladder, s	Application of PLC: What is logic, eries and parallel function of OR, AND	Conventional, NOT logic,	8

E: O in in vi In	x Or logic, Analysis of rung. Timer and Counter Instructions; on delay and ff delay and retentive timer instructions, PLC counter up and down structions, combining counters and timers, Comparison and data handling structions, Sequencer instruction, Visualization Systems, Types of sualization system, PC based Controller, Applications of HMI's, and terfacing of HMI with	
	Course Outcomes	
At the end of	of the course the students will be able to:	
CO 1	Explain the basic concepts of different types of dc generators and their performance	
CO 2	Evaluate the performance of different dc motors and their starting methods	
CO 3	Analyze the performance of transformer and induction motor	
CO 4	Explain about Constant voltage and Instrument transformers	
CO 5	Compare types of stepper motors and their control, introduce and choose the controllers for automation	
Text Books	 Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition Andrew Parr, Industrial drives, Butterworth – Heineamann G.K.Dubey.Fundamentals of electrical drives Programmable Logic Controllers by W.Bolton 	
Reference Books	 Introduction to Programmable Logic Controllers by Garry Dunning, 2nd edition, Thomson, ISBN:981-240-625-5 Instrumentation Engineers Hand Book - Process Control, Bela G Liptak, Chilton book company, Pennsylvania A.E. Fitzerald ,C.Kingsley and S.D Umans, Electric Machinery - McGraw Hill Int. Student edition S.K.Pillai. A First course on electric drives –Wiley Eastern 1990 Programmable Logic Controllers by Hugh Jack. 	

Code		Embedded System Design Total I		Lecture:45	
			Tutoria	l: 15	
RM20M202	2			3-1-0=4	
Course Objec	ctives:				
To introdu	uce the	e Building Blocks of Embedded System			
To Introd	uce Bı	us Communication in processors, Input/output interfaci	ng.		
To impart	t know	eledge in various processor scheduling algorithms.			
To introdu	uce Ba	asics of Real time operating system and example tutoria	als to disc	uss on	
To introdu	uce of	ne real time operating system tool.			
UNIT		Contents		Hours	
1	Intro	oduction to embedded system : Background and Hi	story of	10	
	lang	uage for embedded system: desirable character	stic of		
	prog	ramming language for embedded system. low-level	versus		
	high	-level language, main language implementation	issue :		
	cont	rol, typing. Major programming languages for en	nbedded		
	syste	ems.Embedded System on a Chip (SOC) and the use	of VLSI		
	desig	gned circuits			
2	Proc	essor and Memory Organization : Structural u	inits in	10	
	proc	essor, Processor selection for an embedded system, I	Memory		
	devi	ces, Memory selection, Allocation for memory to	program		
	segn	feeting Processory I/O Devices Device I/O types and a	DMA,		
	Inter V	Synchronous Iso synchronous and Async	hronous		
	Com	munication from serial devices – Examples of interna	l serial-		
	com	munication devices – UART and HDLC –Parallel Port	Devices		
	-Sot	phisticated interfacing features in Device/ports –Tir	ner and		
	Cour	nting Device			
3	Mici	rocontroller : Introduction to microcontrollers, Ev	olution,	9	
	Mici	roprocessors vs Microcontrollers, MCS-51 Family Ov	verview,		
	Impo	ortant Feature, Architecture. 8051 Pin functions, Arch	itecture,		
	Add	ressing Modes, Instruction set, Instruction Types			
4	Prog	ramming : Assembly Programming . Timer Registers	s, Timer	8	
	mod	es, Overflow flags, clocking sources, timer counter in	terrupts,		
	baud	rate generation. Serial port register, mode of or	peration,		
	initia	alization, accessing, multiprocessor communications	, serial		

	port baud rate	
5	Interrupts: Interrupt Organisation, Processing interrupts, Serial port interrupts, External interrupts, interrupt service routines. Microcontroller specification, Microcontroller design, testing, timing subroutines, look up tables, serial data transmission	8
	Course Outcomes	
At the end of	the course the students should be able to:	
CO1	Acquire a basic knowledge about fundamentals of microcontrollers.	
CO2	Acquire a basic knowledge about programming and system control t specific task.	o perform a
CO3	Acquire knowledge about devices and buses used in embedded netwo	orking.
CO4	Develop programming skills in embedded systems for various applic	cations.
CO5	Acquire knowledge about basic concepts of circuit emulators.	
Text Books	 JohnB.Peatman, "Design with PIC Microcontroller", Pearson Pu Predko, "programming and customizing the 8051 microcontrolled" 	b 2. er " , TMH.
Reference Books	 Mazidi, "The 8051 microcontroller and embedded system", Pear Deshukh, "Microcontroller", TMH. 	rson Pub.

Code	Design Of Mechanism & Manipulators	Tota Lecture Tutoria	ıl e:45 l: 15
RM20M203	RM20M203		
• To de	evelop skills for designing and analyzing linkages, cams, gears	and other	
mech	anisms.		
• To de	evelop skills for use of mathematics software and for writing co	omputer progr	rams to
solve	kinematics problems.		
• To p	ovide a foundation for the study of machine design.		
Unit	Contents		Hours
1	Mobility analysis, Degree of Freedom (DOF), Mixed Mo Partial and Fractional DOF, Closed and Open Chain Systems of D-H representation for 1) Kinematic parameter tables for st structures like.	bility, Total, , Application andard robot	10
2	2 Link coordinate diagram and arm matrix of SCARA, Alpha-II, PUMA articulated robot, standard robot, polar frame, structure robot, Enter transform solution, Arm matrix of standard Robots, Polar frame, structure robots		10
3 Structural Analysis and Synthesis of mechanisms, Alternative design solutions; Coding, evaluation and selection of optimum mechanism. Type synthesis, number synthesis and design of mechanisms. Indexes of merit; Graphical, Algebraic and Optimization techniques, Matrix methods of design and analysis; Design of function, Path and Motion Generators; Structural and Mechanical error; Design and Analysis using software like ADAMS.		9	
4	Manipulators- Classifications, actuation and transmission Coordinate Transformation – DH notations, Inverse a kinematics, Manipulator dynamics from Lagrangian and New of view.	on systems; nd Forward vtonian point	8
5	Forces in Manipulator, manipulate Dynamics, selecting of rob Application Reliability of Robotic & Automation system evaluation.	ots for Robot as and their	8
	Course Outcomes		
At the end of	f the course the students will be able to:		

CO 1	Ability to apply the principles of balancing of masses to various links, mechanisms and engines
CO 2	Ability to conduct static and dynamic force analysis and equilibrium of forces for mechanical systems
CO 3	Ability to study the various principles of vibrations of different systems
CO 4	Select appropriate actuation and transmission systems
CO 5	Analyse forces in Manipulator, Automation systems and their evaluation.
Text Books	 Andeen, G.B., "Robort Design Hand Book", SRI International, McGraw Hill, Craig, J.J., "Introduction to Robotics", Mechanics and Control, Addison Wesley Spong, M., and Vidyasagar, M. "Robot Dynamics and Control", John Wiley, NY, 1989.
Reference Books	 Venkataraman. S.T., and liberall. T., "Dextrous Robot Hands", S AppuKuttan, "Robotics", I.K. International Publishing house

	Discipline Specific Elective-III		
Code	Numerical Methods & Computer Programming	Total Lecture:45	
RM20M205		3-0-0=3	
Course Obj	ectives:		
 T aj T E T T al d m 	 To provide suitable and effective methods called Numerical Methods, for obtaining approximate representative numerical results of the problems. To solve problems in the field of Applied Mathematics, Theoretical Physics and Engineering which requires computing of numerical results using certain raw data. To solve complex mathematical problems using only simple arithmetic operations. The approach involves formulation of mathematical models of physical situations that can be solved with arithmetic operations. To deal with various topics like finding roots of equations, solving systems of linear algebraic equations, interpolation and regression analysis, numerical integration & differentiation, solution of differential equation, boundary value problems, solution of 		
Unit	Contents	Hours	
1	Introduction: Working principle of synchronous, Asynchronou motors,Difference between I and servo motors, Torque characteristics, Power v/s. Speed characteristics, Vector d Concepts of linear and frameless motors, Selection of feedb Duty cycle, , V/F control, Flux control.	us & stepper 10 v/s speed uty inductio pack system,	
2	Industrials Drives: DC and AC motors operation and selection control and application of brushless DC motor, PMSM, steppe servomotor, selection criteria for servo motor and serv universal motor, electric drive, types of industrial drives, the cl of drive, advantages of drives over other prime movers, r heating effects, electric braking, rheostatic and regenerat principles in power converters.	n, method of r motor, A.C o amplifier, naracteristics notor rating, ive braking	
3	Motion laws for rotary and linear systems: converting rota system, conceptsand principles of ball screws, rack and pini pulley, chain drives, gear drives, Selection of converting system response gearing, and control approaches of Robots, Control Current amplifier	ry to linear 9 on, belt and ns, Dynamic loops using	
4	Introduction to Programmable Logic Controllers: Definitions of structure of PLC, working principles, data storage methods, inp flag processing's, types of variables, definition of firmwar programming software tool and interfacing with PC (RS232 & TCP-IP), methods of PLC programming (LD, ST, FBD & SF	f PLC, basic outs / outputs re, software, FC), function	

	blocks logical / mathematical operators & data types, array & data structure, PID, types of tasks and configuration, difference between relay logic and PLC, selection of PLC controller
5	Logic, instructions & Application of PLC: What is logic, Conventional Ladder v/s PLCladder, series and parallel function of OR, AND, NOT logic, Ex Or logic, Analysis of rung. Timer and Counter Instructions; on delay and Off delay and retentive timer instructions, PLC counter up and down instructions, combining counters and timers, Comparison and data handling instructions, Sequencer instruction, Visualization Systems, Types of visualization system, PC based Controller, Applications of HMI's, and Interfacing of HMI
	Course Outcomes
At the end of	f the course the students will be able to:
CO 1	Familiar with finite precision computation.
CO 2	Familiar with calculation and interpretation of errors in numerical method. 6.
	Familiar with programming with numerical packages like MATLAB
CO 3	Familiar with numerical integration and differentiation, numerical solution of
	ordinary differential equations
CO 4	Apply Numerical analysis which has enormous application in the field of Science and some fields of Engineering.
CO 5	Familiar with numerical solutions of nonlinear equations in a single variable
Text	 Process Control Instrumentation Technology, Johnson Curties, Prentice hall of India, 8th edition
Boo ks:	• Andrew Parr, Industrial drives, Butterworth – Heineamann
	 O.K.Dubey.Fundamentals of electrical drives Programmable Logic Controllers by W.Bolton
Reference Books:	 Introduction to Programmable Logic Controllers by Garry Dunning, 2nd edition, Thomson, ISBN:981-240-625-5 Instrumentation Engineers Hand Book - Process Control, Bela G Liptak, Chilton book company, Pennsylvania .A.E. Fitzerald ,C.Kingsley and S.D Umans, Electric Machinery - McGraw Hill Int. Student edition S.K.Pillai. A First course on electric drives –Wiley Eastern 1990 Programmable Logic Controllers by Hugh Jack.

	Discipline Specific Elective-III		
Code	Micro-Electro-Mechanical Systems	Total Lect	ure:45
RM20M20	6		3-0-0=3
Course Ob • Stud syst • Stud	jectives: lents will be introduced to technology for development of micro ems lent are exposed to microsystem fabrication process and manufa	electromecha	anical
• Stud	lents are taught principal of microsystem and Micro manufactur Contents	ing	Hours
1	Overview of MEMS and Microsystems: MEMS and M Microsystems and Microelectronics, Microsystems and mi	licrosystems, niaturization,	10
	Application of Microsystem. Working Principles of Microsensors- Acoustic wave sensors, biomedical sensors and chemical sensors, optical sensors, pressure sensors, there Microactuation- actuation using thermal forces, actuation memory alloys, actuation using piezoelectric crystals, act electrostatic forces. MEMS and Micro actuators- Mic micromotors, microvalves, micropumps, microace Microfluidics.	Microsystem: l bio sensors, mal sensors. using shape- uation using ro grippers, celerometers,	
2	Materials for MEMS and Microsystems: substrates and w substrate materials, silicon as a substrate material- the ideal MEMS, single crystal silicon and wafers, crystal structure indices, mechanical properties of silicon. Silicon compou dioxide, silicon carbide, silicon nitride, polycrystalline sil piezoresistors, Gallium arsenide, polymers for MEMS and M conductive polymer, the Langmuir-Blodgett film, packaging m	vafers, active substrate for e, the miller unds- silicon icon Silicon ficrosystems, aterials.	10
3	Microsystems Fabrication Processes: Photolithography-photo application, light sources, photo resist development, photo re and post baking. Ion implantation, diffusion, oxidationtherm silicon dioxide, thermal oxidation rates, oxide thickness Chemical vapor deposition- working principle of CVD, chemic in CVD, rate of deposition, enhanced deposition ; phy deposition- sputtering ;Deposition by epitaxy ; Etching- Chem plasma etching	o resists and esist removal al oxidation, by color ; cal reaction s ysical vapor nical etching,	9
4	Micro manufacturing: Bulk Manufacturing- overview of etch and anisotropic etching, wet etchants; etch stop, dry comparison of wet versus dry etching. Surface micromachin description, process in general, mechanical problems ass	ing, isotropic etching, and ning- general ociated with	8

	surface micromachining. The LIGA Process- general description of the LIGA process, materials for substrates and photo resists, electroplating. The SLIGA process.
5	Microsystems Design: Design Considerations- Design constraints, selection of materials, selection of manufacturing processes, selection of signal transduction, electromechanical system and packaging Process design- photolithography, thin film fabrications, geometry shaping, Mechanical design- thermo mechanical loading, thermo mechanical stress analysis, dynamic analysis, interfacial fracture analysis. Design of micro fluidic network systems- fluid resistance in microchannels, capillary electrophoresis network systems, mathematical modeling of capillary electrophoresis network systems
	Course Outcomes
At the end	of the course the students will be able to:
CO 1	Students will explain MEMS Technology, Present, Future and Challenges.
CO 2	Students will be able to explain micro sensors, micro-actuators, their types and applications
CO 3	Students will be able to explain micro sensors, micro-actuators, their types and applications
CO 4	Students will be able to explain about fabrication processes for producing micro- sensors and actuators.
CO 5	They will also be able to apply Reliability, and Failure Analysis Testing
Text Books	 Tai Ran Hsu,MEMS& Micro systems Design and Manufacture Tata McGraw Hill, NewDelhi An Introduction to Microelectromechanical Systems Engineering By Nadim Maluf, Kirt Williams Artech House
Reference Books	 Franssila Sami, Introduction to Micro Fabrication, WILEY, 2nd Edition, 2010 NadimMaluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, 3 rd edition, 2000. Mahalik Nitaigour Premchand, MEMS, McGraw-Hill, 2007.

	Discipline Specific Elective-III		
Code	Ultra-Precision Machining	Total Lect	cure:45
RM20M207	7		3-0-0=3
Course Obj	ectives:		
• This	course will give you the basic precision engineering principles		
• This	course will give you state-of-the-art concepts for designing	higher accur	racy into
your	machines,		
• This other	course will give you Nano-processing systems whether they rwise	are ultra-pre	cision or
Unit	Contents		Hours
1	Introduction: Definition of ultra-precision machining; Tanigue evolution of accuracy in the twentieth century; de Nanotechnology; Positional accuracy of today's manufacturi and equipment; Deviational and scattering errors in achieving resolution. Atomic-bit and atomic cluster processing met mechanical, nano-physical and nano-chemical and –ele processes, their capabilities and advantages.	chi curves of efinition of ng processes g nanometric hods: Nano- ctrochemical	10
2	Mechanism of nano-mechanical processing of atomic clusters stress, breaking stress and processing energy density; Concept in mechanical processing; thresholds of specific energy; Nan- abrasive and adhesive processing, theories of nanometric p ductile and brittle materials, and polymers; Failure and fr uniform and localized loading; Atomic-bit processing and 1 density, theories of nano-indentation and scratching.	s: Processing of size effect o-machining, processing of acture under lattice defect	10
3	Mechanism of nano-physical and -chemical processing of Scanning tunneling effect, directional photon, electron an processing, plasma surface processing, molecular beam Principles of chemical and electro-chemical processing, eq chemical and electro-chemical reactions.	atomic-bits: d ion beam processing; uilibrium of	9

4	Nano-processing systems (Nano-mechanical processing) - Diamond turning: Soft metal single-point diamond turning technology, the ultra- precision CNC machine, plane and spherical mirrors machining; Nano- grinding: technology and requirements, concept of critical depth of cut, size-effect in form and fine grinding, Elid grinding, Elastic emission grinding; mechano-chemical polishing of Si wafers, principles and models; Ultra-precision polishing: Principles of ultra-precision polishing of block gauges, balls and aspherical lenses.
5	Nano-processing systems (Nano-physical and –electrochemical processing): Photo beam processing: Thermal and chemical processes in photon beam ablation; Electron and ion beam processing: removal mechanism in electron and ion beam processing, abilities and limitations; scanning tunneling microscope (STM) processing; Chemically reactive milling and etching processes, Chemically reactive deposition and consolidation, electrochemical machining and deposition processes. Nano-measuring systems: In-situ processes, mechanical and optical measuring systems, Scanning probe and image processing systems.
	Course Outcomes
At the end of	of the course the students will be able to:
CO 1	Define ultra-precision machining, Nano-mechanical, Nano-chemical, Nano-physical
	and electro-chemical machining.
CO 2	Understand mechanism of Nano machining in atomic bit and cluster, Nano
	indentation and scratching.
CO 3	Study and understand mechanism of directional photon, electron, plasma, molecular
	beam processing.
CO 4	Explain mechanism of diamond turning and ultra-precision polishing and grinding
CO 5	Understand Nano physical and electrochemical processes. Study mechanical and
	optical measuring system for Nano machining
Text Books	 N. Taniguchi, Nanotechnology: Integrated Processing Systems for Ultra- precision and Ultra-fine Products, Oxford University Press Inc., NY, J. McGeough, Micromachining of Engineering Materials, Marcel Dekker, Inc., NY,
Reference Books	• M. C. Shaw, Principles of Abrasive Processing, Oxford: Clarendon Press,

	Discipline Specific Elective-IV		
Code	Artificial Intelligence	Total Lect	ure:45
RM20M20	08		3-0-0=3
Course Ob	ojectives:		
• To	be familiar with the applicability, strengths, and weaknesses	of the basic kn	owledge
repi	resentation,		U
• To	problem solving, machine learning, knowledge acquisition and	d learning me	ethods in
solv	ving particular engineering problems.	-	
Unit	Contents		Hours
1	verview: foundations, scope, problems, and approaches of AI. Intelligent gents: reactive, deliberative, goal-driven, utility-driven, and learning		10
	space, blind, heuristic, problem eduction, A, A*, AO*, minin propagation, neural, stochastic, and evolutionary search algor applications.	kward, state- hax, constraint ithms, sample	
2	Knowledge Representation and Reasoning: ontologies, for knowledge representation and reasoning, representing and re- objects, relations, events, actions, time, and space; predicate l calculus, description logics, reasoning with defaults, rea- knowledge, sample applications	oundations of asoning about ogic, situation soning about	10
3	Planning: planning as search, partial order planning, construct planning graphs Representing and Reasoning with Uncertai probability, connection to logic, independence, Bayes r networks, probabilistic inference, sample applications. Dec basics of utility theory, decision theory, sequential decisi elementary game theory, sample applications.	ion and use of n Knowledge: ile, Bayesian ision-Making: on problems,	9
4	Machine Learning and Knowledge Acquisition: le memorization, examples, explanation, and exploration. Lea neighbour, naive Bayes, and decision tree classifiers, Q learning action policies, applications.	arning from rning nearest learning for	8
5	Languages for AI problem solving: Introduction to PROLC data structures, representing objects and relationships, built Introduction to LISP- Basic and intermediate LISP program Systems: Architecture of an expert system, existing expert MYCIN, RI, Expert system shells.	G syntax and in predicates. nming Expert systems like	8
	Course Outcomes		

At the end of	of the course the students will be able to:
CO 1	Learn the basics and applications of artificial intelligence and categorize various
	problem domains, basic knowledge representation and reasoning methods.
CO 2	Analyze basic and advanced search techniques including game playing, evolutionary
	search algorithms, constraint satisfaction.
CO 3	Learn and design intelligent agents for concrete computational problems.
CO 4	Design of programs in AI language(s).
CO 5	Acquire knowledge about the architecture of an expert system and design new expert
	systems for real life applications
Text	• Rich E., Artificial Intelligence, Tata McGraw Hills (2009).
Books	George F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Pearson Education Asia (2009)
	Complex Problem Solving, Peurson Education Pista (2005).
Reference	• Patterson D.W, Introduction to AI and Expert Systems, Mc GrawHill (1998).
DOOKS	• Shivani Goel, Express Learning- Artificial Intelligence, Pearson Education India(2013).

	Discipline Specific Elective-IV		
Code	Virtual Instrumentation	Total Lect	ure:45
ME20M209)		3-0-0=3
Course Obje	ectives:		
• The	objective of this course is to introduce the concept of virtual instrume	entation	
• To d	levelop basic programs using loops, case structures etc.		
• To in	cluding its applications in image, signal processing and motion contra	rol.	
Unit	Contents		Hours
1	Review of Virtual Instrumentation: Historical perspective, B and Architecture of Virtual Instruments Data-flow Technique programming in data flow, Comparison with conventional prog	lock diagram es: Graphical gramming.	10
2	T Programming Techniques: VIs and sub-VIs, Loops and Charts, Arrays, lusters and graphs, Case and sequence structures, Formula nodes, Local nd global variables, Strings and file I/O.		10
3	Data Acquisition Basics: ADC, DAC, DIO, Counters and time Instrumentation Interfaces: RS232C/ RS485, GPIB, PC Hardw DMA software and hardware installation.	ers. Common are structure,	9
4	Use of Analysis Tools: Advanced analysis tools such as Fourie Power spectrum, Correlation methods, Windowing and filter applications in signal and image processing, Motion Contro Topics: System buses, Interface buses: PCMCIA, VXI, SCXI,	er transforms, ing and their l. Additional PXI, etc.	8
5	Laboratory Work : Components of Lab VIEW, Celsius t conversion, Debugging, Sub-VI, Multiplot charts, Case struc files, Function Generator, Property Node, Formula node, SI Array, Strings, Clusters, DC voltage measurement using DAQ	o Fahrenheit tures, ASCII hift registers,	8
	Course Outcomes		
At the end o	f the course the students will be able to:		
CO 1	To demonstrate the working of LabVIEW		
CO 2	To explain the various types of structures used in LabVIEW.		
CO 3	To analyze and design different type of programs based on data	a acquisition.	
CO 4	. To demonstrate the use of LabVIEW for signal processing, in	nage processir	ng etc
CO 5	To learn and use different analysis tools		

Text Books	 Johnson, G., LabVIEW Graphical Programming, McGraw–Hill (2006). Sokoloft, L., Basic Concepts of LabVIEW 4, Prentice Hall Inc. (2004). Wells, L.K. and Travis, J., LabVIEW for Everyone, Prentice Hall Inc. (1996).
Reference Books	• Gupta, S. and Gupta, J.P., PC Interfacing for Data Acquisition and Process Control, Instrument Society of America (1988).

	Discipline Specific Elective-IV		
Code	Metrology & Computer Aided Inspection	Total Lect	aure:45
RM20M210			3-0-0=3
Course Obj	ectives:		
• To in	npart concepts of computer aided design		
• To st	udy computer aided manufacturing engineering through the use	e of analytical	1
techr	iques,		
• To in	troduce experiments, computer simulation methods, and other	modern engir	neering
tools			
• To ex	stend the concept of Reflex detection, & Proximity detection, A	Applications o	of
Indu	ctive and Capacitive proximity sensors.	11	
Unit	Contents		Hours
Om	Mataslassy and Tashaisway Standards in mataslassy	definitions	nours
1	Fraceability, Characteristics Length & Angular measurement	ts-Review of	10
	standard instruments, GD and tolerance procedure-Review of	dimension &	
	form tolerance and methods of measurement, Tolerance anal metrology. Instruments, Methods and new approaches	ysis, Surface	
2	Laser Applications in Metrology: LASER light sour	ce, LASER	10
Ζ.	nterferometer, LASER alignment telescope, LASER microm	eter, On-line	10
	and in-process measurements of diameter, Roundness roughness using LASER Micro holes and topography measure	and surface	
3	Special Measuring Instruments and Techniques: Optoelectro	onic devices,	Q
5	contact and non-contact types, Applications in on-line an	d in-process	
	Machine vision, shape identification. Edge detection	techniques	
	Normalisation, gray scale correlation, Template Technique	ues, Surface	
]	oughness using vision system, Interfacing robot and imag	e processing	

	roughness using vision system, Interfacing robot and image processing system.	
4	Co-ordinate Measuring Machine: Types of CMM, Probes used, Applications, Non-contact CMM using electro optical sensors for dimensional metrology, Non-contact sensors for surface finish measurements, statistical evaluation of data using computer, Data	8
	integration of CMM and data logging in computers.	

5	Sensors in Inspection: Manufacturing applications of photo detectors, deflection methods-beam detection, Reflex detection, & Proximity detection, Applications of Inductive and Capacitive proximity sensors, Understanding microwave sensing applications laser sensors and limit switches. Advanced sensor technology-Bar code systems, Principles and applications of Colour sensors, electro-magnetic identifier, Tactile sensors, Ultrasonic sensors, Odour sensors.				
Course Outcomes					
At the end of the course the students will be able to:					
CO 1	Generalise the importance of measuring system				
CO 2	Demonstrate the concepts of linear and angular measurements to practical applications				
CO 3	Illustrate the methods for form measurements				
CO 4	Describe the principles and applications of laser in metrology.				
CO 5	Select the equipment and suitable technique to measure power, force and temperature.				
Text Books	 Fundamentals of dimensional Metrology T. Busch and R. Harlow Delmar, 3e Engineering Metrology G. Thomas and G. Butter Worth PUB Sensors and Control systems in Manufacturing Sabne Soloman McGraw Hill Book Measurement systems: Applications & Design Doebelin International Student Edition 				
Reference Books	 Optoelectronics for Technology and Engineering Robert G. Seippel Prentice Hall India Interface Technology for Computer Controlled Manufacturing processes Ulrich-Rembold, Armbruster and Ulzmann Marcel Dekker Publications, NY Optoelectronics J. Watson Van Nostrand Rein Hold (UK) Company 				

Code	CAM & Robotics	Practical:	30
RM20M20 4		I	0-0-4=2
	Contents		Hours
1	Line drawing or Circle drawing algorithm experiment: writin running it on computer.	ng the progran	n and
2	Transformations algorithm experiment for translation/rotation program and running it on computer.	on/scaling: wri	ting
3	Design problem experiment: writing the program for design other system and running it on computer.	of machine el	ement or
4	Optimization problem experiment: writing a program for optimizing a function and running it on computer.		
5	Auto CAD experiment: understanding and use of Auto CAD	commands.	
6	Writing a small program for FEM for 2 spring system and ru FEM package.	inning it. Or u	sing a
7	Use of Graphic software standards packages e.g. GKs/PHIC	S/GL etc.	
8	Use of pro Engineer/Ideas etc.		
9	Writing a part-programming (in word address format or in A drilling operation (point-to-point) and running on NC machi	PT) for a job ne.	for
10	Writing a part programming (in word address format or in A milling operation (contouring) and running on NC machine	PT) for a job	for
11	Experiment on Robots and it programs		
12	Experiment on Transfer line/Material handling.		
13	Experiment on difference between ordinary machine and NC retrofitting.	C machine, stu	dy or
14	Experiment on study of system devices such as motors and f	eedback devic	ces.
15	Experiment on Mechatronics & controls		

Code		Practical:30
	Project Based Learning II	
PB20M201		0-0-4=2
	Contents	Hours
	In this course we have only practical part and student are allowed to devlop small project on the basis of the knowledge .They have required however ,if a student show interest in the basis technology of the Computer Science/Electronics/Mechanical/Civil Engineering. Then appropriate guidance will be given by relative faculty member	30