Master of Technology (Digital Communication) 2 Years Degree Program

Program Educational Objectives (PEOs)

- To prepare the students with good understanding of the respective subjects with design, analytical and problem solving skills.
- To train the students with knowledge of latest design trends.
- To inculcate in students the sense of ethics, morality, professionalism, creativity, leadership, independent thinking, self confidence, good communication skills and prepare them to become successful engineers who can work worldwide in industries and research & development laboratories.
- To introduce the research world to them so that they feel motivated for higher studies and innovation not only in their own domain but multidisciplinary domain.
- To recognize social needs and contribute effectively through self learning.

Program Outcome (POs):-

- The graduates will be able to apply the concepts of Engineering mathematics through Laplace, z-transform, linear algebra, probability and statistics, differential equations etc. and basic knowledge of engineering physics and chemistry.
- The graduates will be able to understand, interpret the problem, design and perform the experiments to meet the desired solution of the problem within the context of electronics and communication engineering.
- The graduates will have a good understanding of professional and ethical responsibility.
- The graduates will be able to express themselves effectively through written and oral communication.
- The graduates will have a good understanding and knowledge in applying the engineering solutions to society.
- The graduates will have a good understanding for the need of life long learning and will be able to work in teams.

- The graduates will show good proficiency in applying the techniques and knowledge of modern engineering skills in tackling contemporary technological challenges.
- The graduates will have good background for admission to post graduate programs (in same domain), management degree programs and also research programs in various organizations of national and international repute.
- The graduates will be able to participate and succeed in competitive examinations.
- Adapt transform in industry by understanding the need of independent and lifelong learning

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

School of Engineering & Technology

M Tech (Digital Communication)

						First Y	7ear – S	emester H	First							
Course Code	Course Title	Con per	ntact Ho Week	ours	Credits	(]	Theory Practical									
		L	Т	Р		ETE uration Hours)	MSE	ASG	TA	ATTD	ESE	Total	CE	ESE	Total	Grand Total
MA20M101	Advanced Mathematics	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
DC20M101	Micro Controller System Design	3	1		4	3	30	05	05	10	50	100	-	-	-	100
DC20M102	Advanced Digital Signal	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
	DSE – I	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – II	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
DC20M103	Micro Controller System	-	-	4	2	2	-	-	-	-	-	-	20	30	50	50
DC20M104	Advanced Digital Signal Processing	-	-	4	2	2	-	-	-	-	-	-	20	30	50	50
PB20M101	Project Based Learning	-	-	4	2	2			_	·	-	-	50	50	100	100
DC20M105	System Programming	-	-	4	2	2			-		-	-	20	30	50	50
-	-	Tot	tal		26	-	-					500			250	750

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolut

						First Y	ear – Sei	mester Se	cond							
Course Code	Course Title	Contact Hours per Week		Credits		Theory Pract								ractical		
		L	T	Р		ETE iration fours)	MSE	ASG	TA	ATTD	ESE	Total	CE	ESE	Total	Gran d Total
DC20M201	Real Time Embedded System	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
DC20M202	Advanced VISI Design	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
DC20M203	Optical Communication & Network	3	1	-	4	3	30	05	05	10	50	100	-	-	-	100
	DSE – III	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
	DSE – IV	3	-	-	3	3	30	05	05	10	50	100	-	-	-	100
GE20B201	Generic Electives I	2	-	-	2	2	30	05	05	10	50	100	-	-	-	100
DC20M204	Advanced VLSI Design	-	-	4	2	3	-	-	-	-	-	-	20	30	50	50
PB20M201	Project based learning	-	-	4	2	2	-				-	-	50	50	100	100
DC20M205	Modeling and Simulation of Computer	-	-	4	2	-	-				-	-	20	30	50	50
-	-	Tot	tal		26	-	-				·	600			200	800

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolution

Digital Communication

						Seco	nd Year	– Semeste	er Thir	ď						
Course Code	Course Title	Contact Hours per Week		Credits	Du I	Theory Practical										
		L	T	Р		CTE ration ours)	MSE	ASG	ТА	ATTD	ESE	Total	CE	ESE	Total	Grand Total
PB20M301	MOOC -1	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100
PB20M302	MOOC - 2	-	-	8	4	-	-	-	-	-	-	-	50	50	100	100
DC20M301	Dissertation Phase-I	-	-	24	12	2		-			-	-	200	200	400	400
-	-	Tota	al		20		-					-	-		-	600

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolution

Digital Communication

Second Year – Semester Fourth																
Course Code	Course Title	Contact Hours per Week		Credits	redits Dur E		Theory Practical									
		L	Т	Р		rE ation urs)	MSE	ASG	ТА	ATTD	ESE	Total	CE	ESE	Total	Grand Total
DC20M401	Dissertation Phase-II	-	-	32	16	2		-			-	-	250	250	500	500
-	-	Tota	ıl		16		-					-	-		-	500

MSE- Mid Semester Exam, ASG- Assignment, TA- Teacher's Assessment, ATTD-Attendance, ESE- End Sem Exam ,CE-continuous Evolution

Master of Technology (Digital Communication Engineering)

2 Years Degree Program

Curriculum Components

Components	Credits
Program Core (11Courses)	34
Program Electives (Discipline Specific Electives) (04Courses)	12
Generic Electives (01 Courses)	02
Project Based Learning (PBL)/MOOCs (04 courses)	12
Project (02 Courses)	28
Total	88

Distribution of credits across all components

SEM No.	Programme Core	Discipline Specific Electives (DSE)	Generic Electives (GE)	Project Based Learning (PBL)/ MOOCs	Project	Total Credit
I.	18	6	-	2	-	26
II.	16	6	2	2	-	26
III.	-	-	-	8	12	20
IV.	-	-	-	-	16	16
Total	34	12	02	12	28	88

M Tech (Digital Communication) List of Program (Discipline Specific) Electives (DSE)

	First Year – Semester One (DSE-I)									
SN	Course Code	Course Title								
1.	DC20M106	Antenna theory and techniques								
2.	DC20M107	High performance communication networks								
3	DC20M108	DSP application								
	First Year – Semester One-(DSE-II)									
SN	Course Code	Course Title								
1.	DC20M109	Advanced Digital Communications								
2.	DC20M110	Multimedia Communication								
3	DC20M111	Telecommunication switching systems and networks								
		First Year – Semester Second-(DSE-III)								
SN	Course Code	Course Title								
1.	DC20M206	Optical Instrumentation & Measurement								
2.	DC20M207	Mobile & Satellite Communication								
3.	DC20M208	Network Security								
		First Year – Semester Second-(DSE-IV)								
1	DC20M209	Broadband Communication Systems and Networks								
2	DC20M210	Nano Electronics								
3	DC20M211	Error control coding								

Generic Electives

List of Generic Electives

S.NO	Code	Nomenclature of the	Offering School
		course	
1.	GE20M01	Java Programming	School of Engineering &
			Technology
2.	GE20M02	Python Programming	School of Advance Computing
3.	GE20M03	Matlab Programming	School of Engineering &
			Technology
4.	GE20M04	C++ Programming	School of Engineering &
			Technology
5.	GE20M05	R Programming	School of Advance Computing
6.	GE20M06	CAD/CAM Software	School of Engineering &
			Technology

Sanjeev Agrawal Global Educational (SAGE) University, Bhopal

Syllabus

For

M.Tech

DIGITAL COMMUNICATION

I Semester

School of Engineering & Technology

School of Engineering & Technology

Code		Advanced Mathematics	Total Lec Tutoria	ture:45 al: 15
MA20M1	01		3	-1-0=4
Course Obie	ectives			
This cou Mathematic	irse is	design to develop coherent understanding of various a	areas of Ac	dvanced
•	To in	stroduce students to the theoretical distributions, sam	pling distri	butions
	and t	heir applications		
•	To in	troduce the students to the solution of partial differentia	al equation	
•	Dem	onstrate an understanding to the theory and application	s of linear a	algebra
•	To ex	stend the concept of the computer algorithms related	to dimens	sionality
	redu	ction and feature extraction.		
• To in	ntrodu	ce the concepts of Stochastic process and Markov proces	ss transitio	n.
UNIT		Contents		Hours
1	Prob Binor elem relat	ability, compound probability and discrete random mial, Normal and Poisson's distributions, Sampling dis entary concept of estimation and theory of hypothesis, ions.	variable. stribution, , recurred	10
2	Solut varia Paral FT, D	tion of Partial Differential Equation (PDE) by sepa ble method, numerical solution of PDE (Laplace, bola) using finite difference methods, Elementary prop FT, WFT, Wavelet transform, Haas transform.	ration of Poisson's, perties of	9
3	Finite oper space Trape Taylo meth	e differences: forward, backward and central or ators, polynomial interpolation: equally spaced and ed data; Numerical Differentiation, Numerical int ezoidal and Simpson1/3 rd and 3/8 th rules; Initial value p or series method, Euler and modified Euler methods, Rur nods.	difference unequally tegration- roblems - nge- Kutta	9
4	Solut facto squa Orthe least Princ	tion of Linear systems– Gaussian elimination me orization method, Cholesky's factorization method. Lin res problems - Normal equations, QR method (or Gran o- normalization), Singular value decomposition (SVD) -squares problems, numerical rank determination tipal Component Analysis.	thod, LU ear least- n Schmidt for linear via SVD,	9
5	Stor prol of E	chastic process, Markov process transition probability bability matrix, just and higher order Markov process, Ap Eigen value problems in Markov Process, Markov chain	transition pplication . Queuing	8

	system, transient and steady state, traffic intensity, distribution queuing system, concepts of queuing models (M/M/1: Infinity/ Infinity/ FC FS), (M/M/1: N/ Infinity/ FC FS), (M/M/S: Infinity/ Infinity/ FC FS).
	Course Outcomes
At the end	of the course the students should be able to:
CO1	Be able to understand probability, sampling distribution and discrete random variable.
CO2	Understand the terms and their applications of Solution of Partial Differential Equations
CO3	Understand the numerical methods and their use in obtaining approximate solutions to otherwise intractable linear/non-linear system of equations and differential equations.
CO4	Analyse the fundamental use of matrices in the computer algorithms related to dimensionality reduction and feature extraction.
CO5	Implement Stochastic process, Markov process transition probability transition probability matrix and Markov process.
Text Book	 S C <i>Gupta</i> & V K <i>Kapoor</i>, 2014, Fundamentals of Mathematical Statistics, Sultan Chand & Sons, Delhi. Gilbert Jimmie, 2010, Gilbert, Linear Algebra And Matrix Theory, Elsevier India.
	• Dr B S Grewal, 2014, Numerical Methods in Engineering & Science: With Programs in C, C++ & MATLAB, 10 th Edition, Khanna Publishers.
Reference Books	 Rohatgi, V.K., and Saleh, A.K.Md. Ehsanes, 2009, An introduction to probability and statistics. Second Edition, Wiley India. L. N. Trefethen and David Bau, 1997, Numerical Linear Algebra, SIAM, Philadelphia.

Code	Micro controller system Design Total Lecture					
		Tutorial: 1	15			
DC20M101		3 - 1 -	0 = 4			
Course Object • To intro microco	tive- boduce students with the architecture and operation of typical micro portrollers.	oprocessors and				
To rank microco To prov microco To intro	ontrollers. vide strong foundation for designing real world applications using ontrollers. oduce students with the architecture and operation of DSP Process	microprocessors and or	and			
Unit	Contents		Hours			
1	Review of 8-Bit and 16-bit microprocessor, support chips an techniques, single chip micro-computers, architecture, programmory, ports, input Output interfacing and programming	nd interfacing ram and data	10			
2	Single chip micro controllers- INTEL 8051/ 8751, MOTOR 68HC0/68HC11 architecture, instruction set and programmi mapping, addressing modes, Registers, expanded modes. In handling timing and serial I / O.	OLA ng, Memory terrupt	10			
3	Software development Modular approach, integra development environment, Object oriented interfacing and Recursion and debugging.	ated software I programming,	10			
4	ATMEL 89C51 / 52 and PIC micro-Controllers- Case studie application of Micro-Controller in Data acquisition, Embede Process control etc.	es. Design and ded controllers,	8			
5	DSP Processor architecture and sample design using TI – D	SP.	7			
	Course Outcomes					

	At the end of the course the students should be able to:	
CO 1	Assess and solve basic binary math operations using the microprocessor and explain the microprocessor's and Microcontroller's internal architecture and its operation within the area of manufacturing and performance	
CO 2	Apply knowledge and demonstrate programming proficiency using the various addressing modes and data transfer instructions of the target microprocessor and microcontroller	
CO 3	Compare accepted standards and guidelines to select appropriate Microprocessor (8085 & 8086) and Microcontroller to meet specified performance requirements.	
CO 4	Analyze assembly language programs; select appropriate assemble into machine a cross assembler utility of a microprocessor and microcontroller.	
CO 5	Design electrical circuitry to the Microprocessor I/O ports in order to interface the processor to external devices. Evaluate assembly language programs and download the machine code that will provide solutions real-world control problems.	
Text Books	 Embedded Systems 8051 By Majidi & Majid Design With Micro-Controllers By John P. Peatman Tmh Advance microprocessor and peripheral –A.K. Ray and K. M. Bhurchandi Mcgraw Hill Microprocessor and Interfacing – D.V.Hall, McGraw Hill. The Intel microprocessor - Barry B. Brey, Pearson 	, Tata
Reference Books	 Embedded Micro-Computers System By Jonathan W. Valvano Data Manuals – Intel Motorola The 8086 & 8088 Microprocessor- LIU and Gibson, Tata McGraw Hill The 8051 microcontroller and embedded systems-M.A. Mazidi, Janice GillispieMazidi, Pearson Prentice Hall 	

Code	Advanced Digital Signal Processing	Total Lectu Tutorial:	re:45 15
DC20M10	2	3 - 1 -	0 = 4
Course Ob To r To i To i To i Proc To r sign	jective: nake students familiar with the most important methods in DSP ntroduce students with Overview of the signal processing of Determin ntroduce students with the Including digital filter design, ntroduce students with the Transform-domain processing and importa- ressors. nake students aware about the meaning and implications of the prope als	nistic signals ance of Signal rties of systems a	und
Unit	Contents		Hours
1	Overview of the signal processing of Deterministic signals: Tir frequency domain response of the linear-shift invariant systems	ne domain and	12
2	 IIR Filter Design: Filter Approximation, Impulse Invariant Met Transformation method filter structures, Finite word length effects, limitations FIR Filter Design: Linear phase response, Windowing technique, Gibb's Phenome Frequency Sampling Method, FIR Filter structures. 	thod, Bi-linear of IIR filters. enon,	12
3	Power Spectrum Estimation, Classical Spectral Estimation, No methods for power spectrum estimation: Bartlet method, Welch method, Blackman method, performance anlysis of various techniques.	n parametric	12
4	Parametric Modeling - AR, MA, ARMA methods, Minimum v spectral estimations. Filter Bank methods.	ariance	9
	Course Outcomes		

	At the end of the course the students should be able to:	
CO 1	Use concepts of trigonometry, complex algebra, Fourier transform, z-transform to analyze the operations on signals and acquire knowledge about Systems	
CO 2	Select proper tools for analog-to-digital and digital-to-analog conversion. Also select proper tools for time domain and frequency domain implementation.	
CO 3	Design, implementation, analysis and comparison of digital filters for processing of discrete time signals	
CO 4	Integrate computer-based tools for engineering applications	
CO 5	Employ signal processing strategies at multidisciplinary team activities. Assess the techniques, skills, and modern engineering tools necessary for analysis of different electrical signals and filtering out noise signals in engineering practice. Also develop creative and innovative designs that achieve desired performance criteria within specified objectives and constraints, understand the need for lifelong learning and continuing professional education	
Text Books	 G. J. Proakis and D. G. Manolakis, "Digital Signal Processing, Principles, algorithms and applications", 4th ed. Pearson Education. S. K. Mitra, "Digital Signal Processing" 3rd ed. TMH. 	
Reference Books	 A.V. Oppenheim and R.W. Schafer "Discrete Time Signal Processing", PHI 1992. Steven M. Kay "Modern Spectral Estimation", PHI 1988. Clark Cory.L, "Lab view DSP and Digital comm.", TMH 2005. Roman Kuc "Introduction to Digital Signal Processing", McGraw Hill 1988. 	

Code	Micro Controller System Lab-I	Total Lecture:30
DC20M103	List Of Experiments	0-0-2=2
1	Programs for 16 bit arithmetic operations for 8086 (using Modes)	y Various Addressing
2	Program for sorting an array for 8086.	
3	Program for searching for a number or character in a strin	ng for 8086
4	Program for string manipulations for 8086.	
5	Program for digital clock design using 8086.	
6	Interfacing ADC and DAC to 8086.	
7	Parallel communication between two microprocessors us	ing 8255.
8	Serial communication between two microprocessor kits u	ısing 8251.
9	Interfacing to 8086 and programming to control stepper r	notor.
10	Programming using arithmetic, logical and bit manipulat 8051.	ion instructions of
11	Program and verify Timer/Counter in 8051.	
12	Program and verify Interrupt handling in 8051.	
13	UART Operation in 8051	
14	Communication between 8051 kit and PC	
15	Interfacing LCD to 8051.	
16	Interfacing Matrix/Keyboard to 8051.	
17	Data Transfer from Peripheral to Memory through DMA	controller 8237/8257.
Note: Minimur	n of 10 experiments to be conducted.	

Code	Advanced Digital Signal Processing Lab-II	Total Lecture:30
DC20M104	List Of Experiments	0 - 0 - 2 = 2
1	To find DFT / IDFT of given DT signal	
2	Program to obtain Linear Convolution of two finite lengt	h sequences 8
3	Program for Computing auto correlation	
4	To find frequency response of a given system(transfer funequation)	nction/difference
5	Implementation of FFT of given sequence	
6	Determination of Power Spectrum of a given signal.	
7	Implementation of LP FIR filter for a given sequence	
8	Implementation of HP FIR filter for a given sequence	
9	Implementation of LP IIR filter for a given sequence	
10	Implementation of HP IIR filter for a given sequence	
11	Generation of Sinusoidal signal through filtering	
12	Generation of DTMF signals	
13	Implementation of Decimation Process	
14	Implementation of Interpolation Process	
15	Implementation of I/D sampling rate converters	
16	Impulse Response of First Order and Second Order Syste	ems.
Note: Minim	um of 10 experiments to be conducted	

Code	System Programming	Total Lecture:30
DC20M105	List Of Experiments	0 - 0 - 2 = 2
1	Write a program to implement the lexical analyzer.	
2	Write a Lexical Analyzer (using lex utility for UNIX).	
3	Write a program to left factor the given grammar.	
4	Write a program to remove the Left Recursion from a give	ven grammar.
5	Aim: Implement Recursive Descendent Parsing for the gi	ven Grammar.
6	E -> T + E / T T -> F * T / F F -> (E) / i	
7	Implement Predictive Parser for the given grammar. E -> F -> (E) / i	T + E / T T -> F * T / F
8	Write a SAL program in text file and generate SYMTAB	and LITTAB
9	Use macro features of C language	
10	Write a program which generates Quadruple Table for the	e given postfix String
11	Write a C program to parse a given string using Predictiv	e parsing for given
12	grammar. type \rightarrow simple \uparrow id array [simple] of type	
13	simple \rightarrow integer char num dotdot num	
Note: Minim	um of 10 experiments to be conducted	

Code	Discipline Specific Elective- I	Total Lecture:45
DC20M106	Antenna Theory and Techniques	3 - 0 - 0 = 3

Course Objective-

Students will be introduced to antennas, their principle of operation Antenna analysis and their applications.

- Introduce the student to wave propagation over ground
- Introduce the student to through troposphere and ionosphere
- Introduce the student to diversity principles,
- Introduce the student to Propagation effects in microwave systems,
- Introduce the student to satellite, space, and radar links

Unit	Contents	Hours
1	Review of the theory of electromagnetic radiation. Introduction to various antenna types wire, loop and helical antennas, analysis using assumed current distribution.	10
2	Aperture antennas: slot, wave guide, horn, and reflector antennas. Analysis using field equivalence principle and Fourier transform methods. Linear arrays. Traveling wave & broadband antennas. Antenna measurements.	11
3	Printed antennas: Feeding methods, transmission line & cavity models, analysis and design of rectangular & circular microstrip antenna. Arrays: pattern synthesis, planar arrays, phased arrays. Active antennas and arrays.	12
4	Paraboloidal reflector antenna, different feed configurations, shaped beam antennas, lens antenna. Antennas for biomedical applications. Smart antennas for mobile communications. Antenna for infrared detectors.	12
	Course Outcomes	
	At the end of the course the students should be able to:	
CO 1	Define various antenna parameters	
CO 2	Analyze radiation patterns of antennas CO3. CO4 CO5	
CO 3	Evaluate antennas for given specifications	

CO 4	Illustrate techniques for antenna parameter measurements	
CO 5	To understand the various applications of antennas .Discuss radio wave propagation	
Text Books	 Antennas, John Kraus, Ronald Marhefka, Tmh Electromagnetic Waves And Radiating Systems, E.C. Jordan And K.G. Balmain, Antenna Theory: Analysis And Design, Constantine A. Balanis , John Wiley & S Antenna Theory & Design, Robert S. Elliott, John Wiley & Sons 	,Phi ons
Reference Books	 Antennas And Wave Propagation,G. S. N. Raju , Pearson. Antennas And Wave Propagation,A.R. Harish, M. Sachidananda, Oxford Antenna Handbook: Antenna Theory,Y. T. Lo, S. W. Lee, Springer . Antenna Theory And Practice, Chatterjee, R., New Age International. 	

Code	Discipline Specific Elective- I	Total Lecture	e:45
DC20M10	7 High Performance Communication Networks	3-0-0=	= 3
Course Ob	jective- To understand the basic concepts of data communication, Introduce the student to layered model, protocols and interworking b networks and switching components in telecommunication systems. Discuss the nature, uses and implications of internet technology. To understand the functioning of Frame Relay, ATM. An overview of security issues related to data communication in net Contents Basics of Networks: Telephone, computer, cable television an network, networking principles, digitization: Service integrati services and layered architecture, traffic characterization and services, network elements and network mechanisms.	etween. computer works d wireless on, network QOS, networks	Hours 10
2	Packet switched networks: OSI and IP models, Fast and Gigal FDDI, DQDB, frame relay, SMDS, internet working with SM and TCP IP networks: overview, internet protocols, TCP and performance of TCP/IP networks circuit switched networks, S DWDM, fibre to home, DSL, intelligent networks, CATV.	oit Ethernets, DS. Internet VDP, ONET,	11
3	ATM and Wireless networks: Main features, addressing, signa routing, ATM header structure, adaptation layer, management BISDN, interworking with ATM, wireless channel, link level access, network design and wireless networks.	ling and and control, design, channel	12
4	Optical networks and Switching: Optical links, WDM systems connects, optical LANs, optical paths and networks, TDS and switch designs, packet switching, distribution, shared, input a buffers.	, cross- SDS, modular ad output	12
	Course Outcomes		

	At the end of the course the students should be able to:	
CO 1	Understand the basics of data communication, networking, internet and their importance.	
CO 2	Analyze the services and features of various protocol layers in data networks.	
CO 3	Differentiate wired and wireless computer networks	
CO 4	Analyse TCP/IP and their protocols.	
CO 5	Recognize the different internet devices and their functions	
Text Books	 J. Warland and P. Varaiya, "High performance communication networks", Harcourt and Morgan Kauffman, London 2000 Sumit Kasera and Pankaj Sethi, "ATM networks", Tata McGraw Hill, 2000. 	
Reference Books	 Behrouz. A. Forouzan, "Data Communication and networking,4TH edition. Leon Garacia Widjaja, "Communication networks", Tata McGraw Hill, 2000. 	

Code	Discipline Specific Elective- I	Total Lectur Tutorial:	re:45 00
DC20M108	DSP Application	3 - 0 - 0) = 3
Course Obj	ective :		
 Understand basic tradeoffs in digital representation of signals: sampling rate, bandwidth, bit rate, fidelity Analyse minimum phase, linear phase, and all-pass discrete-time systems Check the stability of filters Choose filter structures according to their performance characteristics: sensitivity, complexity, delay, etc Program digital signal processors to perform DSP in real-time 		it rate, kity,	
Unit	Contents		Hours
1	Review of Discrete time signals: sequences, representation. Di systems: linear, time in variant, LTI systems, properties, and c coefficients difference equations. Frequency Domain represent discrete time signals and systems	screte time onstant tation of	10
2	Review of Z Transform – Properties, ROC, Stability, Causality Inverse Z Transform, Recursive and Non Recursive systems, F discrete time system	y, Criterion. Realization of	10
3	DFT: Properties, Linear and Circular convolution, Discrete Co Transform, Relationship between DFT and DCT. Computation FFT/Decimation in Time and Decimation in Frequency	sine n of DFT:	10
4	FIR and IIR systems: Basic structure of FIR and IIR, Bilinear Transformation, Design of Discrete time IIR filter-Butterworth Inverse Chebychev, Elliptic etc. Design of FIR filters by wind Rectangular, Bartlett, Hann, Hamming, Kaiser, Window filter, method relationship of Kaiser to other window. Application of Design of Digital filter. Effect of Finite register length in filter	n, Chebychev, lowing – Design MATLAB for Design	8
5	Discrete time Random signals: Discrete time random process, Spectrum Representation of finite energy signals, response of I to random signals. power spectrum estimation: Basic principal estimation, estimate of auto con variance, power spectrum ,cro variance and cross spectrum. Advance signal processing techn transforms: multi rate signal processing- down sampling/up sa introduction to discrete Hilberts Transform, Wavelet Transform Transform etc.	Averages, linear systems s of spectrum oss con ique and mpling, n, Haar	7

Course Outcomes		
At the end of	of the course the students should be able to:	
CO 1	Demonstrate the concept of Conductors, Insulators, and Semiconductors based on energyband theory and analyze relevant problems	
CO 2	Explain the working principles of P-N Junction Diode, zener diode and analyze their applications in the rectifier, clipper, clamper, regulator etc.	
CO 3	Analyze characteristics of Bipolar junction transistor(BJT) under CE, CE, CC mode of operation and its biasing therein	
CO 4	Distinguish the operations of JFET, MOSFET and demonstrate their operations under CG, CS, CD configurations	
CO 5	Determine parameters in Operational Amplifier circuit design for various applications	
Text Books	 Discreate time signal Processing by Opperenheim & Schaffer PHI 2nd Edition Digital Signal Processing using MATLAB by S.Mitra 	
Reference Books	 Digital Signal Processing By Proakis Pearson Education Theory & application of Digital Signal Processing by L.R.Rabiner & B. Gold PHI 	

Code	Discipline Specific Elective- II	Total Lectu	re:45
DC20M109	C20M109 Advance Digital Communication $3-0-0=$		= 3
 Course Objective Students will try to learn: Aim is to identify the functions of different components Learn about theoretical bounds on the rates of digital communication system Introduce the student to represent a digital signal using several modulation methods Draw signal space diagrams compute spectra of modulated signals and apply redundancy for reliable communication. 			
Unit	Contents		Hours
1 c F I t t	Waveform coding Techniques: Discretization in time and amp quantizer, quantization noise power calculations, signal to qua atio, non-uniform quantizer, a-Law & μ -law, companding, en PCM, Channel noise and error probability, DPCM and DM, Co ow bit rates, PredMEion and adaptive filters, Baseband shapir ransmission, PAM signals and their power spectra, Nyquist cr eye pattern.	litude, linear ntization noise coding and oding speech at ng for data iterion, ISI and	10
2 I N O F	Digital modulation techniques: Binary and M-ary modulation rs. symbol error probability and bandwidth efficiency, ASK, F Modulation techniques, comparison of QPSK, MSK & GMSK Coherent and Non-Coherent detection techniques, Phase-Lock Probability of error calculation for M-ary systems.	techniques, Bit SK, PSK systems, ed loops,	11
3 F 7 F	Equalization: Optimal Zero-Forcing Equalization, Fractionally Fransversal Filter Equalizers, Adaptive Linear Equalizer, Pass Equalization. Fading & Diversity: Types of diversity, Receiver Performance analysis for Rayleigh Fading, The Diversity-Inter off. The Gaussian MIMO Channel, Basics of MIMO systems.	Spaced and band r Diversity, rference Trade-	12
4 E X Y X	Error control coding: Concept of channel coding, Channel cod eapacity theorems, Linear block codes, cyclic codes and convo /itoria decoding algorithm, Turbo codes, Trellis codes, TCM. Spread-spectrum modulation to is esequences, direct sequence and frequency-Hop spread sp Signal-space dimensionality and processing gain	ing & Channel olution codes, on: Pseudo oectrum,	12

Course Outcomes		
At the end of	of the course the students should be able to:	
CO 1	Understand the basics of information theory, source coding techniques and calculate Entropy of source	
CO 2	Describe and determine the performance of line codes and methods to mitigate inter symbol interference	
CO 3	Learn the generation and detection of base band system.	
CO 4	Understand the generation, detection signal space diagram, spectrum, bandwidth efficiency, and probability of error analysis of different band pass modulation techniques.	
CO 5	Describe and determine the performance of different error control coding schemes for the reliable transmission of digital representation of signals and information over the channel. Understand various spreading techniques and determine bit error performance of various digital communication systems.	
Text Books	 Communication Systems By Simon Haykin, John Wiley and Sons,4th Edition, Digital Communication-Fundamentals and Applications By Sklar, 2nd e Pearson Education India. Reference Books 	2006 dition,
Reference Books	 Electronic Communication Systems, Fundamentals through Advanced, By V Tomasi, 4th edition, Pearson Education India. Digital communication by John R. Barry, Third edition, Springer Interna Edition :Communication Systems Engineering, By J. G. Proakis, Prentice Hall, 2nd Edition 	Wayne ational ition.

Code	Code Discipline Specific Elective- II Total Lectur	
DC20M110	C20M110Multimedia Communication $3-0-0=3$	
Course Obj	ective-	
 To un To De To lea To un To de 	derstand the standards available for different audio, video and text a esign and develop various Multimedia Systems applicable in real tir arn various multimedia authoring systems. derstand various networking aspects used for multimedia applicatio velop multimedia application and analyze the performance of the sa	applications. ne ns. ume
Unit	Contents	Hours
1	Introduction, multimedia information representation, multime multimedia applications, Application and networking termino QoS and application QoS, Digitization principles,. Text, imag video.	dia networks, logy, network es, audio and
2	Text and image compression,, compression principles, text co Runlength, Huffman, LZW, Document Image compression us coding, image compression- GIF, TIFF and JPEG.	mpression- ing T2 and T3
3 Audio and video compression, audio compression – principles, DPCM, ADPCM, Adaptive and Linear predictive coding, Code-Excited LPC, Perceptual coding, MPEG and Dolby coders video compression, video compression principles.		s, DPCM, 10 ed LPC, on, video
4	Video compression standards: H.261, H.263, MPEG, MPEG MPEG-4 and Reversible VLCs, MPEG 7 standardization proc multimedia content description, MPEG 21 multimedia framew	al, MPEG 2, beess of work
	Course Outcomes	
At the end of	the course the students should be able to:	
CO 1	Developed understanding of technical aspect of Multimedia S	ystems
CO 2	Understand various file formats for audio, video and text med	ia.

CO 3	Develop various Multimedia Systems applicable in real time	
CO 4	Design interactive multimedia software	
CO 5	Apply various networking protocols for multimedia applications To evaluate multimedia application for its optimum performance.	
Text Books	 Fred Halsall, "Multimedia Communications", Pearson education, 2001. Raif Steinmetz, Klara Nahrstedt, "Multimedia: Computing, Communications Applications", Pearson education, 2002. 	and
Reference Books	 K. R. Rao, Zoran S. Bojkovic, Dragorad A. Milovanovic, "Multimedia Communication Systems", Pearson education, 2004. John Billamil, Louis Molina, "Multimedia : An Introduction", PHI, 2002. 	

Code	Code Discipline Specific Elective- II Total Lecture:45		re:45
DC20M111	20M111Telecommunication-Switching and Networks $3-0-0=$		= 3
 Course Objective- This subject aims at introducing to the students the knowledge about the telecommunication industry its services and market, the theoretical basis about performance (queuing theory) and operation (multiplexing, switching, routing, and signaling) in telecom networks Introduce the student to telecommunications Transmission Introduce the student to speech digitization and transmission introduce the student to telephone networks and signalling 			ation
Unit	Contents		Hours
1	Telecommunications Transmission: Basic Switching System, phone Communication, evolution of switching systems -Stron systems Switching Used in telecommunications cross bar swit Electronic Switching – Space Division Switching, Time Division Switching –Time Division space sw Division Time Switching, Time multiplexed space switching, multiplexed Time Switching, Combination Switching Control of Switching Systems: Call processing functions, com stored program control (For all type of switching systems)	Simple Tele- ger switching cching, vitching, Time Time nmon control,	15
2	Speech Digitization and Transmission: Quantization Noise, Co Differential Coding, Vocodors, Pulse Transmission, Line Cod RZ Codes, Manchester Coding, AMI Coding, Walsh Codes, T Traffic Engineering: Grade of Service and Blocking Probabity Networks, Subscriber Loops, Switching Hierchy and Routing, Plans and Systems, Signaling Techniques, In Channel,Commo	ompanding, ing, NRZ and DM. – Telephone , Transmission on Channel.	15
3	Telephone Networks and Signaling: Introduction, subscriber leswitching hierarchy, transmission and numbering plans, common channel signaling CCITT signaling systems. Data Networks: Data transmission in PSTNs, Switching Techn transmission, Data communication architecture, Satellite based Data networks	oops systems, g principles, niques for data	15
	Course Outcomes		

At the end o	f the course the students should be able to:
CO 1	Understand basic techniques and fundamental concepts used in the design of digital system
CO 2	Apply the different switching algebra theorems and apply for logic functions.
CO 3	To manipulate design numeric information in different forms, such as different bases, signed integers, varies codes such as a ASCII, gray and BCD.
CO 4	Design and analyze small combinational and sequential circuits
CO 5	Design and using standard or building blocks to build larger more complex circuits
Text Books	 Flood J E, "Telecommunications switching, traffic and networks" first Indian reprint, Pearson education Asia, (2001). Viswanathan T, "Telecommunication switching systems and networks" 17th Indian reprint, PHI, India, (2003).
Reference Books	 Bosse J G van, Bosse John G., "Signaling in Telecommunication Networks" Wiley, John & Sons, (1997) Bruce S. Davie, Paul Doolan, Yakov Rekhtor, "Switching in IP Networks: IP Switching, Tag Switching, and Related Technologies" Elsevier Science & Technology Books, (1998). Joseph Yu Hui, "Switching and Traffic Theory for Integrated Broadband Networks", Kluwer Academic Publishers, (1990).

SAGE University, Bhopal

Syllabus

For

M.Tech

DIGITAL COMMUNICATION ENGINEERING

II Semester

School of Engineering & Technology

School of Engineering Technology

SAGE University, Bhopal

Co	de	Real Time Embedded System	Total Lectur Tutorial:	re:45 15
DC20N	A201		3-1-0	= 4
 Course Objectives This course will enable students to: Understand basics of Real Time systems Distinguish a real-time system with other systems. Identify the functions of operating system. Evaluate the need for Real time operating system. Design and develop embedded applications by means of real-time operat systems 			erating	
Unit		Contents		Hours
1	Introdu Systen Analys Schedu OS, Tł	action to Real-Time Embedded Systems: Brief history ns, A brief history of Embedded Systems. System Resou sis, Real-Time Service Utility, Scheduling Classes, The Cy aler Concepts, Preemptive Fixed Priority Scheduling Polic nread Safe Re-entrant Functions.	of Real Time arces: Resource aclic Executive, cies, Real-Time	10
2	Proces upper Dynan Interm hierarc system	sing: Preemptive Fixed-Priority Policy, Feasibility, Rate bound, Necessary and Sufficient feasibility, Deadline – Mo nic priority policies. I/O Resources: Worst-case Ex ediate I/O, Execution efficiency, I/O Architecture. Men shy, Capacity and allocation, Shared Memory, ECC Mem s.	Montonic least motonic Policy, kecution time, mory: Physical nory, Flash file	10
3	Multi- protect Deadli time se	resource Services: Blocking, Deadlock and livestock, Crit shared resources, priority inversion. Soft Real-Time Se nes, QoS, Alternatives to rate monotonic policy, Mixed har ervices.	ical sections to ervices: Missed d and soft real-	10
4	Embec mecha Except schedu diagno	Ided System Components: Firmware components, RTOS s nisms, Software application components. Debugging tions assert, Checking return codes, Single-step debu ler traces, Test access ports, Trace ports, Power-On stics.	ystem software Components: ugging, kernel self test and	8
5	Perfori profilii length.	mance Tuning: Basic concepts of drill-down tuning, hardwang and tracing, Building performance monitoring into High availability and Reliability Design: Reliability and	are – supported software, Path d Availability,	7

S D	milarities and differences, Reliability, Reliable software, Available software, esign tradeoffs, Hierarchical applications for Fail-safe design	
	Course Outcomes	
At the en	d of the course the students should be able to:	
CO 1	Analyze Real time operating systems	
CO 2	Describe the functions of Real time operating systems	
CO 3	Demonstrate embedded system applications	
CO 4	Design a Real Time operating system	
CO 5	Analyze performance tuning: basic concepts	
Text Books	• Sam Siewert, "Real-Time Embedded Systems and Components", Cengage Learning India Edition, 2007.	
Referenc Books	 Krishna CM and Kang Singh G, "Real time systems", Tata McGraw Hill, 2003, Qing Li and Carolyn Yao, "Real-Time Concepts for Embedded Systems", CMP Books, 2003, Jane W. S. Liu, "Real Time Systems", Prentice Hall, 2000 4. Phillip A. Laplante, "Real-Time Systems Design and Analysis", John Wiley & Sons, 2004. 	

Co	Code Advanced VLSI Design Total Lectu Tutorial		re:45 15	
DC20N	DC20M202 3-1-0) = 4	
Course • • •	e Objec To unde technolo To unde wafers To learn To unde To learn diffusio	tives erstand the impact of the physical and chemical processes of integ ogy on the design of integrated circuits erstand physics of the Crystal growth, wafer fabrication and ba a the various lithography techniques and concepts of wafer expose erstand Concepts of thermal oxidation and Si/SiO2 interface. In concepts of dopant solid solubility, diffusion macroscopic point n equation. Design and evaluation of diffused layers and its meas	rated circuit fabri asic properties of are system nt, different solu arement methods	ication isilicon tions to
Unit		Contents		Hours
1	Electro process on Ins Oxides Dopan	onic Grade Silicon, Czochralski crystal growing, Si sing consideration, Vapor Phase Epitaxy, Molecular Beam I ulators, Epitaxial Evaluation, Growth Mechanism And , Oxidation Techniques and Systems, Oxide properties, R t At interface, Oxidation of Poly Silicon, Oxidation inducted	licon Shaping, Epitaxy, Silicon kinetics, Thin edistribution of I Defects.	10
2	Optica Plasma Plasma	Lithography, Electron Lithography, X-Ray Lithography, Id properties, Feature Size control and Anisotropic Etch mech Etching techniques and Equipments,	on Lithography, nanism, relative	10
3	Deposi in Sol Mecha Annea Deposi	tion process, Polysilicon, plasma assisted Deposition, Modids, Flick's one Dimensional Diffusion Equation – Atonism – Measurement techniques – Range Theory- Impling Shallow junction – High energy implantation – Fition – Patterning.	els of Diffusion omic Diffusion ant equipment. Physical vapors	10
4	Ion im and De IC tech	plantation – Diffusion and oxidation – Epitaxy – Lithogr position NMOS IC Technology – CMOS IC Technology – nology - Bipolar IC Technology – IC Fabrication.	aphy – Etching MOS Memory	8
5	5 Analytical Beams – Beams Specimen interactions - Chemical methods – Package 7 types – banking design consideration – VLSI assembly technology – Package fabrication technology.		7	
	•	Course Outcomes		<u> </u>

At the end of	of the course the students should be able to:
CO 1	Understand the basic physics of semiconductor devices and the basics theory of PN junction.
CO 2	Understand the basic theory of MOS transistors.
CO 3	Understand the basic steps of fabrication
CO 4	Learn the basics theory of Crystal Growth and Wafer Preparation
CO 5	Learn the basics theory of analytical beams
Text	Kevin F Brennan "Introduction to Semi Conductor Device", Cambridge publications
Books	• .Eugene D Fabricius "Introduction to VLSI Design", McGraw-Hill publications
Reference	• S.M.Sze, "VLSI Technology", McGraw Hill, 2nd Edition. 2008.
Books	• . James D Plummer, Michael D. Deal, Peter B.Griffin, "Silicon VLSI Technology:
	 Wai Kai Chen, "VLSI Technology" CRC press, 2003.

Со	de	Optical Communication and Network	Total Lectur Tutorial:	re:45 15
DC20N	C20M203 3-1-0		0 = 4	
Course	e Objec To stud To stud To learn To expl To enric	tives y about the various optical fiber modes, y about the various configuration and transmission characteristics a about the various optical sources, detectors and transmission tech ore various idea about optical fiber measurements and various cou ch the knowledge about optical communication systems and netwo	of optical fibers hniques ipling techniques orks	
Unit		Contents		Hours
1	Introdu definiti propag optical fiber fa mode f	action-general optical fibre communication system- basic o lons optical modes and configurations -mode analys ation through fibers.modes in planar wave guide-modes fibre-transverse electric and transverse magnetic modes- abrication techniques-fiber optic cables.classification of opti- fiber-graded index fiber.	ptical laws and is for optical in cylindrical fiber materials- ical fiber-single	10
2	Attenu losses- dispers dispers charact calcula	ation-absorption –scattering losses-bending losses-core signal dispersion –inter symbol interference and bandwid ion-material dispersion- waveguide dispersion-polar ion-intermodal dispersion.dispersion optimization of sing teristics of single mode fiber-R-I Profile.cutoff wave le tion-mode field diameter.	and cladding lth-intra model ization mode le mode fiber- ngth-dispersion	10
3	Source structu LED p thresho frequen modula diodes Avalar detecto	s: Intrinsic and extrinsic material-direct and indirect band gres. surface emitting LED-Edge emitting LED-quantum ower-light source materials-modulation of LED-LASER dicold conditions-Rate equations-external quantum efficiencies-structures and radiation patterns-single mode ation-temperature effort. Detectors: PIN photo detector-A-Photo detector noise-noise sources-SNR-detector reache multiplication noise-temperature effects comparisons.	gaps-LED-LED efficiency and odes-modes and ciency-resonant laser-external valanche photo esponse time- ons of photo	10
4	Fundar sources receive measur Fiber c	nental receiver operation-preamplifiers-digital signal tra- s-Front end amplifiers-digital receiver performance-proba er sensitivity-quantum limit.Optical power measurem rement-dispersion measurement- Fiber Numerical Aperture eut- off Wave length Measurements- Fiber diameter measure	nsmission-error bility of error- ent-attenuation Measurements- rements-Source	8

]	o Fiber Power Launching-Lensing Schemes for Coupling Management-Fiber to Fiber Joints-LED Coupling to Single Mode Fibers-Fiber SplicingOptical Fiber connectors.	
5	System design consideration Point – to –Point link design –Link power budget – 7 ise time budget, WDM –Passive DWDM Components-Elements of optical networks-SONET/SDH.Optical Interfaces-SONET/SDH Rings and Networks- High speed light wave Links-OADM configuration-Optical ETHERNET-Soliton.	
	Course Outcomes	
At the e	nd of the course the students should be able to:	
CO 1	Explain the passive and active components of optical communication	
CO 2	Describe the principle and operation of the optical sources and detectors such as LASER & APD K2	
CO 3	Summarize the basic concepts of optical networks K2	
CO 4	Describe about the SONET/SDH and architecture of Optical Transport Network K2	
CO 5	Discuss the elements of WDM networks and its potential applications	
Text Books	 Rajiv Ramaswami and Kumar Sivarajan, "Optical Networks Practical Perspective" 2nd Edition, Morgan - Kaufmann Publishers. 2. Uyless N. Black, Front Royal, Virginia, "Optical Networks, Third Generation Transport Systems", Prentice Hall Publishers. 	
Reference Books	 Achyut K. Dutta, Niloy K. Dutta, Masahiko Fujiwara, "WDMTechnologies: Optical Networks" Elsevier Academic Press Mukherjee, Biswanath, "Optical WDM Networks", Springer Books, 2006 Joseph C Patios, "Fiber Optical Communications", Prentice Hall International 2004, 5th Edition 	
	• G.P.Agrawai: Nonlinear Fiber Optics', Academic Press. 2001, 3rd Edition	

Code	Advanced VLSI Design Lab-II	Total Lecture:30
DC20M204	List Of Experiments	0-0-2=2
1	Designing of continuous electronics controllers, (P, I, D,	PI, PD, PID)
2	Study of Electro – Pneumatic Trainer kit and Pneumatic contro	ol valves.
3	Controlling of Temperature of water by continuous com PID).	trollers (P, I, D, PI, PD,
4	Study of P to I converter and it's Interfacing to electro-pr	neumatic kit.
5	Study of I to P converter and it's Interfacing to electro-pr	neumatic kit.
6	Study of PLC and ladder diagram programming.	
7	Controlling of flow meter through PLC.	
8	Controlling of Bottling plant through PLC.	
9	Controlling of Water level through PLC.	
10	Implementation of traffic light control through PLC.	
11	Controlling of stepper motor through PLC.	
12	Study of rotary encoder and its controlling through PLC.	
Note: Minimum of 10 experiments to be conducted.		

Code	Modeling and Simulation of Computer	Total Lecture:30
DC20M205	List Of Experiments	0-0-2=2
1	System Models & System Simulation	
2	Vrification And Validation Of Model	
3	Differential Equations In Simulation	
4	Discrete System Simulation	
5	Continuous Simulation	
6	Simulation Language	
7	Vii Use Of Database	
8	A.I. In Modelling And Simulation	

Co	Code Discipline Specific Electives – III Total Lect		Total Lectu	re:45
DC20N	C20M206 Optical Instrumentation & Measurement $3-0-$		0 = 3	
Course Objectives • To make the students able to understand different aspects of optical instrument • Ability to explore the design, installation & operation of the basic instrument systems used in industrial environments • Ability to use scientific & engineering fundamentals, skills & tools to form solve & analyze instrumentation problems related to industry & research. • To make the students able to understand Light Sourcing • To make the students able to understand Fiber optic fundamentals Unit Contents 1 Light Sourcing, Transmitting and Receiving: Concept of light, classification of different phenomenon based on theories of light, basic light sources and its characterization, polarization, coherent and incoherent sources, grating theory, application of diffraction grating, electro-optic effect, acousto-optic effect and presente environment and incoherent sources.		ntation entation mulate, Hours 10		
2	Opto - conduc lasers drive c dye las	-Electronic devices and Optical Components: Photo diod etors, solar cells, phototransistors, materials used to fabrid design of LED for optical communication, response times errouitry, lasers classification ruby lasers, neodymium lase ers, semiconductors lasers, lasers applications.	e, PIN, photo- cate LEDs and of LEDs, LED rs, CO2 lasers,	10
3	Interfea and its rayleig spectro	rometry: Interference effect, radiometry, types of interference application, michelson's interferometer and its application h's interferometers, spectrographs and monophotometers, calorimeters, medical optical instruments	ce phenomenon 1 refractometer, onochromators,	10
4	Optica modula (micro sensors	I Fiber Sensors: Active and passive optical fiber se ated, displacement type sensors, multimode active optic bend sensor) single mode fiber sensor-phase modulates a s	nsor, intensity al fiber sensor nd polarization	8
5	Fiber of commu dispers	optic fundamentals and Measurements: fundamental of fib inication system, optical time domain reflectometer (OTDR ion measurement, frequency domain dispersion measurement	ers, fiber optic 2), time domain nt.	7

Course Outcomes					
At the end of	At the end of the course the students should be able to:				
CO 1	Explain the basic concepts of optical transmitting and receiving				
CO 2	Describe different opto- electronic devices				
CO 3	Elucidate different methods of interferometry				
CO 4	Describe selection of the appropriate optical fiber sensors for industrial application				
CO 5	Describe selection of the Fiber optic fundamentals				
Text Books	 J.Wilson&J F B Hawkes, Opto Electronics: An Introduction, Prentice Hall of India, (2011),3rd ed. RajpalS.Sirohi , Wave Optics and its Application, (2001),1st ed. A Yariv , Optical Electronics/C.B.S. Collage Publishing, New York, (1985 Pollock ,Fundamentals of OPTOELECTRONICS,(1994) 				
Reference Books	 G. Hebbar, Optical Fiber Communication, Cengage. J. Wilson & J. F. B. Hawkes, Optoelectronics: An Introduction PHI/ Pearson Rajpal S. Sirohi Wave Optics and its Application, Hyderabad, Orient longman Ltd. A. Yariv, Optical Electronics, C. B. S. Collage Publishing, New York, 1985. 				

Coo	de	Discipline Specific Electives – III	Total Lectur	re:45
DC20N	1207	Mobile & Satellite Communication	3-0-	0=3
Course	 Objec T T co T sy T en p; 	tives his is a required course for students at a senior year. he goal of the course is to introduce students to the func- ommunication. o provide them with a sound understanding of how a sa- ystem successfully transfers information from one earth stati to expose them to examples of applications and tradeoffs to ngineering system design, and to ask them to apply the roblems	lamentals of sa atellite commun on to another. hat typically oc knowledge in	ntellite• nication curring design
Unit		Contents		Hours
1	Introdu of Sa Compa probler	action to Satellite Communication: Historical background, tellite Communications, Communication Networks rison of Network Transmission technologies, Orbital ns, Growth of Satellite communications.	Basic concepts and Services, and Spacecraft	10
2	Introdu Definit Perigee Atmos	iction, Kepler's First Law,Kepler's Second Law, Kepler ions of Terms for Earth-Orbiting Satellites, Orbital Elemente Heights, Orbit Per turbations, Effects of a non s pheric drag.	's Third Law, its, Apogee and pherical earth,	10
3	The Ge Antenr Satellit	eostationary Orbit: Introduction, Antenna Look Angles, Tha, Limits of Visibility, Near Geostationary Orbits, Ea e, Sun Transit Outage, Launching Orbits	ne Polar Mount rth Eclipse of	10
4	Radio Rain A	Wave Propagation: Introduction, Atmospheric Losses, Iono ttenuation, Other Propagation Impairments	spheric Effects,	8
5	Polariz Cross Depola	ation: Introduction, Antenna Polarization, Polarization of S Polarization, Discrimination, Ionospheric Depola rization, Ice Depolarization	atellite Signals, rizaon, Rain	7

Course Outcomes			
At the end of	of the course the students should be able to:		
CO 1	Understand principle, working and operation of various sub systems of satellite as well as the earth station		
CO 2	Apply various communication techniques for satellite applications		
CO 3	Analyze and design satellite communication link		
CO 4	Learn advanced techniques and regulatory aspects of satellite communication		
CO 5	Understand role of satellite in various applications		
Text Books	T. pratt, Ch. Bostain, J.Allnutt, Satellite Communications, 2nd edition, John Wiley & Sons, 1986		
Reference Books	 D. Roddy, Satellite Communications, 3rd ed., McGraw-Hill, 2001. B. Elbert, Introduction to Satellite Communications, 2nd ed., Artech House1999. G.Maral, M. Bousquet, Satellite Communications systems, 2nd edition, John Wiley & Sons, 2002. 		

Code			Total Lectu	re:45
	Discipline Specific Electives – III			
DC20N	DC20M208 Network Security 3-)-0=3	
 Course Objectives To understand basics of Cryptography and Network Security. To be able to secure a message over insecure channel by various means. To learn about how to maintain the Confidentiality, Integrity and Availability of a data. To understand various protocols for network security to protect against the threats in networks. To understand various IP Security: Architecture 			in the	
Unit		Contents		Hours
1	Introdu cryptog classic cryptai Block structu linearc AES.	action to security attacks - services and mechanism - graphy - Conventional Encryption: Conventional encry al encryption techniques - substitution ciphers and transpo- nalysis – steganography - stream and blockciphers - Modern ciphers principals - Shannon's theory of confusion and the re - data encryption standard(DES) - strength of DES - or rypt analysis of DES - block cipher modes of operations	introduction to ption model - sition ciphers – Block Ciphers: fusion - fiestal differential and - triple DES –	10
2	Confid distrib prime theore discret	entiality using conventional encryption - traffic confid- ution - random number generation - Introduction to graph - and relative prime numbers - modular arithmetic - Ferma n - primality testing - Euclid's Algorithm - Chinese Remain e algorithms.	entiality - key ring and field - t's and Euler's inder theorem -	10
3	Princi manag Elliptio Hash H authen and M	ples of public key crypto systems - RSA algorithm - securit ement – Diffle-Hellman key exchange algorithm - introc c curve cryptography – Elgamel encryption - Message Aut Function: Authentication requirements - authentication func tication code - hash functions - birthday attacks – security of ACS.	y of RSA - key luctory idea of hentication and tions - message hash functions	10
4	(Integr Secure authen signatu	ity checks and Authentication algorithms) MD5 message dia hash algorithm (SHA) Digital Signatures: Digital tication protocols - digital signature standards (DSS) - p re algorithm - Authentication Applications: Kerberos and X	gest algorithm - Signatures - proof of digital .509 -	8
5	IP Sec payloa	curity: Architecture - Authentication header - Encapsuds - combining security associations - key management.	lating security	7

Course Outcomes			
At the end of	of the course the students should be able to:		
CO 1	Provide security of the data over the network.		
CO 2	Do research in the emerging areas of cryptography and network security.		
CO 3	Implement various networking protocols		
CO 4	Protect any network from the threats in the world.		
CO 5	Integrity checks and Authentication algorithms		
Text Books	 William Stallings, "Crpyptography and Network security Principles and Practices", Pearson/PHI Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", Pearson. 		
Reference Books	 W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education. Charles P. Pfleeger, Shari Lawrence Pfleeger – Security in computing – Prentice Hall of India. 		

Co	ode		Total Lectu	re:45
		Discipline Specific Electives – IV		
DC20	DC20M209 Broadband Communication Systems and Networks $3-0-0=3$: 3
Cours	e Objec	tives	derstand digital	satellite
•	links, To und To und To und To und	erstand the frequencies and channel allocations. erstand the multi-carrier communication systems. Course erstand the components of broadband erstand the digital subscriber line		sacinte
Unit		Contents		Hours
1	Compo Cable Netwo Relay.	onents of Broadband Communication Systems, Network Arc Broadband, Data Network Architecture, Importance of Broa rk, Future of Broadband Telecommunications. X.25 Technol	hitecture, dband logy & Frame	12
2	DIGIT SHDS Betwe Broadl Applic Standa	AL SUBSCRIBER LINE: DSL Technology, ADSL, HDSL, L. Cable - Modem Technology, Cable Internet Access, Comp en Broadband DSL and Cable Modem Technologies, Future band Systems – XDSL. ISDN & BISDN, ISDN Standards, IS rations. ATM Technology, ATM Network, ATM Service Cla rds, ATM LAN Emulation, ATM Applications	SDSL, parison of DSL and SDN ass, ATM	12
3	SYCH Frame Disadv Eleme Multip Crosso	RONOUS OPTICAL NETWORK (SONET): SONET S , SONET Components, SONET Topologies, Ad vantages of SONET & SDH, SONET and SDH Standards. V nts- Optical Line Terminals, Optical Line Amplifiers, Op vlexers, OADM Architectures, Reconfigurable OAI connects, All-Optical OXC Configurations	ignal, SONET vantages and WDM Network tical Add/Drop DMs, Optical	12
4	NETW Manag Manag (SMI) Netwo	ORK MANAGEMENT: Network Management Architect gement Protocols - Simple Management Information Pro- gement - Information Base (MIB) - Structure of Manageme - Remote Network Monitoring (RMON). Network Security rk Threats, Access Control Methods.	ure - Network otocol (SNMP) ent Information Requirements,	9
	•	Course Outcomes		
At the	end of t	he course the students should be able to:		

CO 1	This course provides an introductory overview on broadband communication networks
CO 2	The course covers major aspects of communication networks, such as network design, performance evaluation, protocols and technologies.
CO 3	This course focuses on the network modelling by using mathematical tools, such as queuing theory and stochastic processes, and network optimization, which can provide guaranteed transmission performance with efficient usage of network resources.
CO 4	The course covers network management architecture
Text Books	 Broadband Communication Systems by Cajetan Akujuobi and Matthew Sadiku, Scitech Publishing. Introduction to broadband Communication Systems By Cajetan M. Akujuobi and MNO Sadiku, Chapman & Hall.
Reference Books	 Fixed Broadband Wireless System Design: The Creation of Global Mobile Communications By Harry R. Anderson; Wiley Blackwell.) Optical Networks A Practical Perspective by Rajiv Ramaswami, Kumar N. Sivarajan, Galen H. Sasaki.

Code		Discipline Specific Electives – IV	Total Lectu	re:45
DC20N	M210	Nano Electronics	3 - 0 - 0 =	3
Course	e Objec • E • E • D • D • A • E	tives nhance basic engineering science and technological lectronics. xplain basics of top-down and bottom-up fabrication proces bescribe technologies involved in modern day electronic dev ppreciate the complexities in scaling down the electronic de xplain basics of epitaxial growth of quantum wells	knowledge of s, devices an sys ices. wices in the futu	f nano stems. 1re.
Unit	_	Contents		Hours
1	Overvi microf miniate and so electro lattices method growth	ew of nanoscience and engineering. Development abrication and electronic industry. Moores' law a urization, Classification of Nanostructures, Electronic prop lids: Isolated atom, Bonding between atoms, Giant molecu n models and energy bands, crystalline solids, Periodi , Electronic conduction, effects of nanometer length sca ls: Top down processes, Bottom up processes methods for of nanomaterials, ordering of nanosystems	milestones in and continued erties of atoms lar solids, Free city of crystal ale, Fabrication templating the	10
2	Classif technic technic analysi for pro	ication, Microscopic techniques, Field ion microscopy, s jues, diffraction techniques: bulk and surfac jues, spectroscopy techniques: photon, radiofrequency, el s and dept profiling: electron, mass, Ion beam, Reflectrome perty measurement: mechanical, electron, magnetic, thermal	scanning probe e diffraction ectron, surface try, Techniques l properties	10
3	norgan Quantu wires, (Text1 Nanotu	ic semiconductor nanostructures: overview of semiconductor nanostructures: quantum quantum dots, super-lattices, band offsets, electronic de). Carbon Nanostructures:Carbon molecules, Carbon Clubes, application of Carbon Nanotubes	ductor physics. wells, quantum ensity of states usters, Carbon	10
4	epitaxi growth electro therma dots, s hall ef band	al growth of quantum wells, lithography and etching, cle , growth of vicinal substrates, strain induced dot statically induced dots and wires, Quantum well widt lly annealed quantum wells, semiconductor nanocrystals, co elf-assembly techniques. Physical processes: modulation do fect, resonant tunneling, charging effects, ballistic carrier absorption, intra band absorption, Light emission proc	eavededge over as and wires, th fluctuations, collidal quantum oping, quantum transport, Inter cesses, phonon	8

	bottleneck, quantum confined stark effect, nonlinear effects, coherence and dephasing, characterization of semiconductor nanostructures: optical electrical and structural		
5	atomic, crystollography, microscopy, spectroscopy (Text 2). Applications: 7 Injection lasers, quantum cascade lasers, singlephoton sources, biological tagging, optical memories, coulomb blockade devices, photonic structures, QWIP's, NEMS, MEMS		
	Course Outcomes		
At the e	nd of the course the students should be able to:		
CO 1	Know the principles behind Nanoscience engineering and Nano electronics.		
CO 2	Apply the knowledge to prepare and characterize nonmaterial.		
CO 3	Know the effect of particles size on mechanical, thermal, optical and electrical		
CO 4	properties of nonmaterial. Design the process flow required to fabricate state of the art transistor technology		
CO 5	Analyze the requirements for new materials and device structure in the future technologies		
Text Books	 Introduction to Nano Technology by Charles. P. Poole Jr& Frank J. Owens. Wiley India Pvt. Ltd. Solid State physics by Pillai, Wiley Eastern Ltd. Introduction to solid state physics 7th edition by Kittel. John Wiley & sons (Asia) Pvt Ltd. 		
Referen Books	 Nano Technology and Nano Electronics – Materials, devices and measurement . Techniques by WR Fahrner – Springer Encyclopedia of Nano Technology by M.Balakrishna Rao and K.Krishna Reddy, Vol I to X Campus books. Nano Technology - Science, innovation and opportunity by Lynn E. Foster. Prentice Hall Pearson education. Hand book of Nano structured materials Vol I & V 6. Encyclopedia of Nano Technology by H.S.Nalwa 		

Code		Discipline Specific Electives – IV	Total Lecture:45	
DC20M211		Error Control Coding	3 - 0 - 0 = 3	
 Course Objectives Understand the concept of the Entropy, information rate and capacity for the Discrete memoryless channel. Apply modern algebra and probability theory for the coding. Compare Block codes such as Linear Block Codes, Cyclic codes etc ar Convolutional codes. Detect and correct errors for different data communication and storage systems. Implement different Block code encoders and decoders. 				
Unit		Contents		Hours
1	Information theory: Introduction, Entropy, Source coding theorem, discrete memoryless channel, Mutual Information, Channel Capacity Channel coding theorem.(Chap. 5 of Text 1) Introduction to algebra: Groups, Fields, binary field arithmetic, Construction of Galois Fields GF (2m) and its properties, (Only statements of theorems without proof) Computation using Galois filed GF (2m) arithmetic, Vector spaces and Matrices.			12
2	Cyclic cyclic Error t	codes: Introduction, Generator and parity check polynomia codes, Syndrome computing and error detection, Decoding rapping Decoding, Cyclic hamming codes, Shortened cyclic	ls, Encoding of of cyclic codes, codes.	12
3	BCH of Galo Majori step m	codes: Binary primitive BCH codes, Decoding procedures, is bis field arithmetic. ty Logic decodable codes: One -step majority logic deco ajority logic.	Implementation ding, Multiple-	12
4	Convo Nonsys catastre state ta Sequer	lution codes: Encoding of convolutional codes: S stematic Convolutional Codes, Feedforward encoder ophic encoder, Structural properties of convolutional codes able, state transition table, tree diagram, trellis diagram. Vir atial decoding: Log Likelihood Metric for Sequential Decodi	ystematic and r inverse, A : state diagram, terbi algorithm, ing.	9
Course Outcomes				

At the end of the course the students should be able to:			
CO 1	Analyse a discrete memoryless channel, given the source and transition probabilities		
CO 2	Apply the concept of modern linear algebra for the error control coding technique.		
CO 3	Construct and Implement efficient LBC, Cyclic codes etc encoder and decoders.		
CO 4	Apply decoding algorithms for efficient decoding of Block codes and Convolutional codes.		
Text Books	 David C.Lay, Steven R.Lay and J.J.McDonald: "LinearAlgebra and its Applications", thEdition, Pearson Education Ltd., 2015 5. Elsgolts, L.:"Differential Equations and Calculus of Variations", MIR Publications, 3rd Edition, 1977 .T.Veerarajan: "Probability, Statistics and Random Process", 3rd Edition, Tata Mc- Graw Hill Co., 2016. 		
Reference Books	 Gilbert Strang: Introduction to Linear Algebra, 5thEdition, WellesleyCambridge Press., 2016 Richard Bronson: "Schaum's Outlines of Theory and Problems of Matrix Operations", McGraw-Hill, 1988. Scott L.Miller,DonaldG.Childers: "Probability and Random Process with application to Signal Processing", Elsevier Academic Press,2nd Edition,2013. E. Kreyszig, "Advanced Engineering Mathematics", 10th edition, Wiley, 2015 		